DOI QR코드

DOI QR Code

NORMAL GENERATION OF NONSPECIAL LINE BUNDLES ON ALGEBRAIC CURVES

  • Kim, Seon-Ja (DEPARTMENT OF ELECTRONICS CHUNGWOON UNIVERSITY) ;
  • Kim, Young-Rock (DEPARTMENT OF MATHEMATICS EDUCATION GRADUATE SCHOOL OF EDUCATION HANKUK UNIVERSITY OF FOREIGN STUDIES)
  • Received : 2009.05.18
  • Published : 2011.01.31

Abstract

In this paper, we classify (C, $\cal{L}$) such that a smooth curve C of genus g has a nonspecial very ample line bundle $\cal{L}$ of deg $\cal{L}$ = 2g-2-a failing to be normally generated, in terms of the number a.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, National Research Foundation of Korea(NRF), KIAS

References

  1. E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of Algebraic Curves.Vol. I, Springer-Verlag, New York, 1985.
  2. E. Ballico, On the Clifford index of algebraic curves, Proc. Amer. Math. Soc. 97 (1986),no. 2, 217-218. https://doi.org/10.1090/S0002-9939-1986-0835868-0
  3. G. Castelnuovo, Sui multipli di una serie lineare di gruppi di punti appartenente ad unacurva algebrica, Rend. Circ. Mat. Palermo 7 (1893), 89-110. https://doi.org/10.1007/BF03012436
  4. M. Coppens and G. Martens, Secant spaces and Clifford's theorem, Compositio Math.78 (1991), no. 2, 193-212.
  5. M. Green and R. Lazarsfeld, On the projective normality of complete linear series onan algebraic curve, Invent. Math. 83 (1985), no. 1, 73-90. https://doi.org/10.1007/BF01388754
  6. R. Hartshorne, Algebraic Geometry, Graduate Text in Math, 52, Berlin-Heidelberg-NewYork 1977.
  7. C. Keem and S. Kim, On the Clifford index of a general (e+2)-gonal curve, ManuscriptaMath. 63 (1989), no. 1, 83-88. https://doi.org/10.1007/BF01173703
  8. S. Kim and Y. Kim, Projectively normal embedding of a k-gonal curve, Comm. Algebra32 (2004), no. 1, 187-201. https://doi.org/10.1081/AGB-120027860
  9. S. Kim and Y. Kim, Normal generation of line bundles on algebraic curves, J. Pure Appl. Algebra192 (2004), no. 1-3, 173-186. https://doi.org/10.1016/j.jpaa.2004.01.008
  10. T. Kato, C. Keem, and A. Ohbuchi, Normal generation of line bundles of high degreeson smooth algebraic curves, Abh. Math. Sem. Univ. Hamburg 69 (1999), 319-333. https://doi.org/10.1007/BF02940883
  11. H. Lange and G. Martens, Normal generation and presentation of line bundles of lowdegree on curves, J. Reine Angew. Math. 356 (1985), 1-18.
  12. G. Martens and F. O. Schreyer, Line bundles and syzygies of trigonal curves, Abh.Math. Sem. Univ. Hamburg 56 (1986), 169-189. https://doi.org/10.1007/BF02941515
  13. D. Mumford, Varieties defined by quadric equations, Questions on Algebraic Varieties (C.I.M.E., III Ciclo, Varenna, 1969) pp. 29-100 Edizioni Cremonese, Rome, 1970.