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ADDENDUM AND ERRATUM TO “ON THE STRUCTURE
OF THE FUNDAMENTAL GROUP OF MANIFOLDS WITH
POSITIVE SCALAR CURVATURE”

JIN HonG Kim

After the publication of the paper [6], it has been noticed that there is an
incomplete argument in Lemma 3.2. So we would like to first correct one of the
main results of [6] (Theorem 1.2) and then have an opportunity to add some
more related results (Theorem 1 below).

As remarked in Remark 2.2 of [6], if the dimension of the manifold M is
four, then the scalar curvature of N, can be made positive after a suitable
conformal change. Since N, is compact, this implies that the scalar curvature
of N, is bounded from below by the constant k£ > 0. Thus the scalar curvature
of the universal cover N, with respect to the pullback metric is again bounded
from below by k. But then a result of Gromov-Lawson or Schoen-Yau says
that the homotopy fill radius of N, is bounded from above. So Theorem 1.2
in Section 4 holds to be true in this case without any further condition. On
the other hand, if the dimension of M is greater than 4 and less than or equal
to 7, then at the moment we need to add one of the following extra conditions
to Theorem 1.2: N, has the bounded homotopy fill radius or the self-adjoint
elliptic operator £ = —A N, Tt 4&—__‘0’2)1%1\7& is positive-definite on the universal
cover N, of Ny. Actually the latter implies the former, as shown in Theorem
3.1 of the paper [6].

Recently we have also obtained an interesting result which is closely related
to the main results of the paper [6] (refer to the paper [5] for more detailed
accounts). To be precise, our result is stated as follows.

Theorem 1. Let M be a closed oriented Riemannian manifold of dimension
4 with positive isotropic curvature. Then the fundamental group of M does not
contain a subgroup isomorphic to the fundamental group of a compact Riemann
surface of genus > 2.

This extends previous results of Fraser [3]|, Fraser and Wolfson [4], and
Brendle-Schoen [1] to the case of a closed oriented Riemannian manifold of
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dimension 4 with positive isotropic curvature and a compact Riemann surface
with genus > 2. The proof of Theorem 1 is achieved by essentially adapting
their proofs to the case of a compact Riemann surface with genus > 2, and we
provide it here for the sake of reader’s convenience. We also remark that in
their paper [2] B.-L. Chen, S.-H. Tang, and X.-P. Zhu announced a complete
classification of closed oriented Riemannian manifolds of dimension 4 with pos-
itive isotropic curvature which would affirmatively answer the conjecture of
Gromov and so Theorem 1 (refer to Conjecture 1.1 of the paper [6]). However,
as far as we know, their result has not been published anywhere, yet, and the
method of the proof of Theorem 1 is completely different from theirs.

Proof of Theorem 1. For the proof, we suppose that 71 (M) contains a subgroup
G which is isomorphic to m; of a compact Riemann surface ¥¢ of genus gg > 2.
Then we will derive a contradiction. The following lemma plays a crucial role.

Lemma 2 (Theorem 1.1 in [4]). Given any C > 0, there is an integer k and a
normal subgroup N (k,C) of G with index k such that

(1) there is a smooth map hy c : ¥ — M of a compact Riemann surface X
into M satisfying the property that

(hi,c)w = m1(2) = m (M)

is injective onto N(k,C),
(2) for any such hy,c, every closed non-trivial geodesic vy on ¥ has length
> C with respect to the induced metric by hy,c.

If we carefully look at the proof of Lemma 2 (or Theorem 1.1 in [4]), then one
can easily see that as C' goes to infinity, so does k. For the proof of Theorem
1, we will also need the following lemma.

Lemma 3 (Theorem 1.2 in [4]). If every closed non-trivial geodesic v on a
compact Riemann surface ¥ has length > C, then there is a Lipschitz distance
decreasing degree-one map f : ¥ — S? such that C|df| < D, where D is some
constant independent of C.

Now, we may assume that M has positive isotropic curvature > x > 0,
since M is compact. Then fix a positive constant C' > 0 which will be chosen
explicitly later. Let hg : X9 — M be a smooth map such that (ho). : 71(Zg) —
m1(M) is an isomorphism onto G. Then it follows from Lemma 2 that there are
a compact Riemann surface ¥ of genus g, a regular k-covering p : ¥ — X, and
a smooth map hy ¢ : ¥ — M given by hi,c = hgop such that (hi,c)s : 71 (2) —
m1(M) is injective with (hg,c)«(m1(M)) =: N(k,C) a normal subgroup of G
of index k. For simplicity, let h = hy c. Note that the Euler characteristic
x(X) is equal to k times of the Euler characteristic x(Xg) of Xg, so we obtain
2 —2g = k(2 — 2g9) and thus ¢ = k(go — 1) +1 > 1. Note also from the
proof of Lemma 2 that for every map h : ¥ — M whose induced map h.,
on 71 (X) equals h,, every closed non-trivial geodesic v has length > C with
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respect to the induced metric by h. Since h is incompressible in the sense that
hy : m(2) — w1 (M) is injective, it follows from a theorem of Schoen and Yau
that there is a stable conformal branched minimal immersion u : ¥ — M such
that u, = h, on 71 (%).

Let I denote the pull-back of the normal bundle N of the minimal surface
u(X) equipped with the pull-back metric and normal connection V+. Then
it is known that F' is a smooth vector bundle of real rank 2 over X, even
across the branch points (see p. 8 of [1]). Let E be the complexification of
F,so E = F ®C. Since F is a complexification of a real bundle F which
is isomorphic to its dual bundle F', E is isomorphic to its dual bundle E* so
that we have ¢1(E) = 0. The metric on F extends as a complex bilinear form
(, ) on E or as a Hermitian metric ( , ) on E. So the connection V* and
the curvature form extend complex linearly to sections s of E. Then there is a
unique holomorphic structure on E such that the 0 operator is given by

Os = (V%s) dz,

i 9 _1(0 4, ;0
where z and y are local coordinates on X and 57 = 3 ( 5c T ay). Moreover,

E splits as a direct sum of a holomorphic line bundle E*:9 and an anti-
holomorphic line bundle E(>1). Hence we have

0=c1(E) = ci(EDO) 4 ¢ (EOD).

This implies that we may assume without loss of generality that ¢; (E(1%) > 0.
Recall that, by using the complexified formula for the second variation of
area, the stability condition can be stated as

Ou, Ou
L 2 oT .2
(0.1) /Z(|v%s| V% s )dzdyZ/(R( 52) 2 ) dady

for all s in the space of sections I'(E) (see [3] and [4]). Notice that every section
s € I'(EMY) is isotropic in the sense that (s,s) = 0. Since M has positive
isotropic curvature, it follows from (0.1) that we obtain

0
(0.2) / [V s[*dady > / K| 2= 23| 2dwdy
» 0z
for all s € T(E(1:0)). By using the inequality (0.2) and the fact that u is non-
constant, one can also show that there is a positive constant ¢ = £(C) such
that
(0.3) VY ofdedy + 5 [ |2 22 > 2 [ Jspasa
: s|°dx Kl—[*|s|"dx — [ |s|"d=

for all s € T'(E(19)). Indeed, suppose that for every € > 0 we have

(0.4) /|Va s|?dxdy + = /Ii| 1?|s|2dxdy < —/| |*dady.
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Then it follows from (0.2) and (0.4) that we have

/| 2s |dmdy</|vds|2dxdy+ m/|—| |52 dudy

< —/ |s|?dxdy.
2 Js

Let t = ——=——75. Thus we obtain
(fz \s|2dzdy)
Ou 5, .19 €
—|*t|"dxdy < -
[ 15t dady < 5
for any e > 0. Since [¢|? is not zero everywhere and |% = |% , we have

%P =0 and so % =0 and % = 0. This implies that u is constant, which is
clearly a contradiction.
Now, taking the arithmetic mean of (0.2) and (0.3), we easily obtain

L 2 K @2 2
(0.5) /2|V%S| dxdy > 1 /2 <|8z| +€) |s|“dxdy

for all s € T(EM).
Next, we define a new Riemannian metric g on ¥ by
Jg=u"g+2e(drz®@dr+dy®@dy) =u"g+e(dz®dz + dzZ @ dz).

Then every closed non-trivial geodesic on ¥ has length > C' with respect to g.
So it follows from Lemma 3 that there is a Lipschitz distance decreasing map
f: ¥ — 5% of degree one with

C|df| < D,

where D is a constant independent of f. Hence we have
af 0 Ju

0.6 C?’|==PP<D|=|Z=D|(|= .

(0.6) Lp<pip=p (1P +e

Let ¢ be a holomorphic line bundle over S? with ¢;(§) > g — 1, where g is
the genus of 3. Fix a metric and a connection on &, and choose sections oy
and ay in T'(€*) such that |a;| + |aa| > 1 on S2. Let £ = f*€. Then we have

c1(€) > g—1. Since ¢;(E19) > 0, we also have ¢ (E19) @) > ¢1(€) > g—1.
By the Riemann-Roch theorem, we have

WO, BN @) =M, EMY @) + (BN @) —g+1
>c1(§)—g+1>0,

where b7 (2, E09 @ €) (j = 0,1) denotes the complex dimension of the Dol-
beaut cohomology H? (¥, EM9 ®¢). This implies that there is a non-vanishing
holomorphic section o on B0 @ €. )

For each j = 1,2, set 7; = f*a; € T(¢*) and s; = o @ 7; € T(EMY). Since
o is holomorphic, we obtain V4 s; = 0 ® V o 7j and |V%Tj|2 = |Vasa,|* <

oz z z o0z
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o |g—£|2, where C’ is a positive constant independent of k and C. Hence we
have

Of 2
0z
for j = 1,2. If we combine the inequality (0.6) with (0.7), we obtain

(0.7) V% sl* = oIV o 7]* < C'lol?|

af ou
CIVY s < CCIPIELP < Do (1542 +¢)).
On the other hand, it is easy to see
0
(0.8) 02/ (|v§sl|2 + |V£52|2) dxdy < QC’D/ |o|? (|—“|2 +5) dxdy.
) 9z 9z » 8,2

Since |s1| + |s2]| = |o|(|71]| + |72]) > |o] on X, by (0.5) we also have
(0.9)

)
/ (|vqul|2+ |v252|2) drdy > f/(|sl|2+|52|2) 1222 4 ¢ ) dady
5 BE Dz 4 Js 0z

K ou
> = =P dxdy.
> 5 [0 (152 + <) dody

By comparing two inequalities (0.8) and (0.9), we have

QC'D/ |o|? (|@|2 + 5) dzdy > 02/ (|Vi31|2 + |Vi{52|2) dzdy
3 0z » oz 9z

K o 5 (10U 5
> — — dzdy.
> 80 /E|O'| (|az| +€) xdy

Thus it is easy to obtain 2C'D > %C’Q, and so C should be less than or equal
1\ 1/2 LN 1/2
to (%) . Finally, if we take C' > MCTD , then we would have a

contradiction. This completes the proof of Theorem 1. O

Note added in proof: The paper [2] is now published in Journal of Differ-
ential Geometry 91 (2012), no. 1, 41-80.
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