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ADDENDUM AND ERRATUM TO “ON THE STRUCTURE

OF THE FUNDAMENTAL GROUP OF MANIFOLDS WITH

POSITIVE SCALAR CURVATURE”

Jin Hong Kim

After the publication of the paper [6], it has been noticed that there is an
incomplete argument in Lemma 3.2. So we would like to first correct one of the
main results of [6] (Theorem 1.2) and then have an opportunity to add some
more related results (Theorem 1 below).

As remarked in Remark 2.2 of [6], if the dimension of the manifold M is
four, then the scalar curvature of Nα can be made positive after a suitable
conformal change. Since Nα is compact, this implies that the scalar curvature
of Nα is bounded from below by the constant k > 0. Thus the scalar curvature
of the universal cover N̄α with respect to the pullback metric is again bounded
from below by k. But then a result of Gromov-Lawson or Schoen-Yau says
that the homotopy fill radius of N̄α is bounded from above. So Theorem 1.2
in Section 4 holds to be true in this case without any further condition. On
the other hand, if the dimension of M is greater than 4 and less than or equal
to 7, then at the moment we need to add one of the following extra conditions
to Theorem 1.2: N̄α has the bounded homotopy fill radius or the self-adjoint
elliptic operator L̄ = −∆N̄α

+ n−3
4(n−2)RN̄α

is positive-definite on the universal

cover N̄α of Nα. Actually the latter implies the former, as shown in Theorem
3.1 of the paper [6].

Recently we have also obtained an interesting result which is closely related
to the main results of the paper [6] (refer to the paper [5] for more detailed
accounts). To be precise, our result is stated as follows.

Theorem 1. Let M be a closed oriented Riemannian manifold of dimension

4 with positive isotropic curvature. Then the fundamental group of M does not

contain a subgroup isomorphic to the fundamental group of a compact Riemann

surface of genus ≥ 2.

This extends previous results of Fraser [3], Fraser and Wolfson [4], and
Brendle-Schoen [1] to the case of a closed oriented Riemannian manifold of
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dimension 4 with positive isotropic curvature and a compact Riemann surface
with genus ≥ 2. The proof of Theorem 1 is achieved by essentially adapting
their proofs to the case of a compact Riemann surface with genus ≥ 2, and we
provide it here for the sake of reader’s convenience. We also remark that in
their paper [2] B.-L. Chen, S.-H. Tang, and X.-P. Zhu announced a complete
classification of closed oriented Riemannian manifolds of dimension 4 with pos-
itive isotropic curvature which would affirmatively answer the conjecture of
Gromov and so Theorem 1 (refer to Conjecture 1.1 of the paper [6]). However,
as far as we know, their result has not been published anywhere, yet, and the
method of the proof of Theorem 1 is completely different from theirs.

Proof of Theorem 1. For the proof, we suppose that π1(M) contains a subgroup
G which is isomorphic to π1 of a compact Riemann surface Σ0 of genus g0 ≥ 2.
Then we will derive a contradiction. The following lemma plays a crucial role.

Lemma 2 (Theorem 1.1 in [4]). Given any C > 0, there is an integer k and a

normal subgroup N(k, C) of G with index k such that

(1) there is a smooth map hk,C : Σ → M of a compact Riemann surface Σ
into M satisfying the property that

(hk,C)∗ : π1(Σ) → π1(M)

is injective onto N(k, C),
(2) for any such hk,C , every closed non-trivial geodesic γ on Σ has length

> C with respect to the induced metric by hk,C .

If we carefully look at the proof of Lemma 2 (or Theorem 1.1 in [4]), then one
can easily see that as C goes to infinity, so does k. For the proof of Theorem
1, we will also need the following lemma.

Lemma 3 (Theorem 1.2 in [4]). If every closed non-trivial geodesic γ on a

compact Riemann surface Σ has length > C, then there is a Lipschitz distance

decreasing degree-one map f : Σ → S2 such that C|df | ≤ D, where D is some

constant independent of C.

Now, we may assume that M has positive isotropic curvature ≥ κ > 0,
since M is compact. Then fix a positive constant C > 0 which will be chosen
explicitly later. Let h0 : Σ0 → M be a smooth map such that (h0)∗ : π1(Σ0) →
π1(M) is an isomorphism onto G. Then it follows from Lemma 2 that there are
a compact Riemann surface Σ of genus g, a regular k-covering p : Σ → Σ0, and
a smooth map hk,C : Σ → M given by hk,C = h0◦p such that (hk,C)∗ : π1(Σ) →
π1(M) is injective with (hk,C)∗(π1(M)) =: N(k, C) a normal subgroup of G
of index k. For simplicity, let h = hk,C . Note that the Euler characteristic
χ(Σ) is equal to k times of the Euler characteristic χ(Σ0) of Σ0, so we obtain
2 − 2g = k(2 − 2g0) and thus g = k(g0 − 1) + 1 ≥ 1. Note also from the

proof of Lemma 2 that for every map h̃ : Σ → M whose induced map h̃∗

on π1(Σ) equals h∗, every closed non-trivial geodesic γ has length > C with
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respect to the induced metric by h̃. Since h is incompressible in the sense that
h∗ : π1(Σ) → π1(M) is injective, it follows from a theorem of Schoen and Yau
that there is a stable conformal branched minimal immersion u : Σ → M such
that u∗ = h∗ on π1(Σ).

Let F denote the pull-back of the normal bundle N of the minimal surface
u(Σ) equipped with the pull-back metric and normal connection ∇⊥. Then
it is known that F is a smooth vector bundle of real rank 2 over Σ, even
across the branch points (see p. 8 of [1]). Let E be the complexification of
F , so E = F ⊗ C. Since E is a complexification of a real bundle F which
is isomorphic to its dual bundle F , E is isomorphic to its dual bundle E∗ so
that we have c1(E) = 0. The metric on F extends as a complex bilinear form
( , ) on E or as a Hermitian metric 〈 , 〉 on E. So the connection ∇⊥ and
the curvature form extend complex linearly to sections s of E. Then there is a
unique holomorphic structure on E such that the ∂̄ operator is given by

∂̄s =
(

∇⊥
∂
∂z̄
s
)

dz̄,

where x and y are local coordinates on Σ and ∂
∂z̄ = 1

2

(

∂
∂x + i ∂

∂y

)

. Moreover,

E splits as a direct sum of a holomorphic line bundle E(1,0) and an anti-
holomorphic line bundle E(0,1). Hence we have

0 = c1(E) = c1(E
(1,0)) + c1(E

(0,1)).

This implies that we may assume without loss of generality that c1(E
(1,0)) ≥ 0.

Recall that, by using the complexified formula for the second variation of
area, the stability condition can be stated as

(0.1)

∫

Σ

(

|∇⊥
∂
∂̄z

s|2 − |∇T
∂
∂̄z

s|2
)

dxdy ≥

∫

Σ

〈R(s,
∂u

∂z
)
∂u

∂z̄
, s〉dxdy

for all s in the space of sections Γ(E) (see [3] and [4]). Notice that every section
s ∈ Γ(E(1,0)) is isotropic in the sense that (s, s) = 0. Since M has positive
isotropic curvature, it follows from (0.1) that we obtain

(0.2)

∫

Σ

|∇⊥
∂
∂z̄
s|2dxdy ≥

∫

Σ

κ|
∂u

∂z
|2|s|2dxdy

for all s ∈ Γ(E(1,0)). By using the inequality (0.2) and the fact that u is non-
constant, one can also show that there is a positive constant ε = ε(C) such
that

(0.3)

∫

Σ

|∇⊥
∂
∂z̄
s|2dxdy +

1

2

∫

Σ

κ|
∂u

∂z
|2|s|2dxdy ≥

κε

2

∫

Σ

|s|2dxdy

for all s ∈ Γ(E(1,0)). Indeed, suppose that for every ε > 0 we have

(0.4)

∫

Σ

|∇⊥
∂
∂z̄
s|2dxdy +

1

2

∫

Σ

κ|
∂u

∂z
|2|s|2dxdy <

κε

2

∫

Σ

|s|2dxdy.
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Then it follows from (0.2) and (0.4) that we have

3

2
κ

∫

Σ

|
∂u

∂z
|2|s|2dxdy ≤

∫

Σ

|∇⊥
∂
∂z̄
s|2dxdy +

1

2
κ

∫

Σ

|
∂u

∂z
|2|s|2dxdy

<
κε

2

∫

Σ

|s|2dxdy.

Let t = s

(
∫
Σ
|s|2dxdy)

1/2 . Thus we obtain

∫

Σ

|
∂u

∂z
|2|t|2dxdy <

ε

3

for any ε > 0. Since |t|2 is not zero everywhere and |∂u∂z | = |∂u∂z̄ |, we have

|∂u∂z |
2 = 0 and so ∂u

∂z = 0 and ∂u
∂z̄ = 0. This implies that u is constant, which is

clearly a contradiction.
Now, taking the arithmetic mean of (0.2) and (0.3), we easily obtain

(0.5)

∫

Σ

|∇⊥
∂
∂z̄
s|2dxdy ≥

κ

4

∫

Σ

(

|
∂u

∂z
|2 + ε

)

|s|2dxdy

for all s ∈ Γ(E(1,0)).
Next, we define a new Riemannian metric g̃ on Σ by

g̃ = u∗g + 2ε(dx⊗ dx+ dy ⊗ dy) = u∗g + ε(dz ⊗ dz̄ + dz̄ ⊗ dz).

Then every closed non-trivial geodesic on Σ has length > C with respect to g̃.
So it follows from Lemma 3 that there is a Lipschitz distance decreasing map
f : Σ → S2 of degree one with

C|df | ≤ D,

where D is a constant independent of f . Hence we have

(0.6) C2|
∂f

∂z
|2 ≤ D|

∂

∂z
|2g̃ = D

(

|
∂u

∂z
|2 + ε

)

.

Let ξ be a holomorphic line bundle over S2 with c1(ξ) > g − 1, where g is
the genus of Σ. Fix a metric and a connection on ξ, and choose sections α1

and α2 in Γ(ξ∗) such that |α1| + |α2| ≥ 1 on S2. Let ξ̃ = f∗ξ. Then we have

c1(ξ̃) > g− 1. Since c1(E
(1,0)) ≥ 0, we also have c1(E

(1,0) ⊗ ξ̃) ≥ c1(ξ̃) > g− 1.
By the Riemann-Roch theorem, we have

h0(Σ, E(1,0) ⊗ ξ̃) = h1(Σ, E(1,0) ⊗ ξ̃) + c1(E
(1,0) ⊗ ξ̃)− g + 1

≥ c1(ξ̃)− g + 1 > 0,

where hj(Σ, E(1,0) ⊗ ξ̃) (j = 0, 1) denotes the complex dimension of the Dol-

beaut cohomology Hj(Σ, E(1,0)⊗ ξ̃). This implies that there is a non-vanishing

holomorphic section σ on E(1,0) ⊗ ξ̃.
For each j = 1, 2, set τj = f∗αj ∈ Γ(ξ̃∗) and sj = σ ⊗ τj ∈ Γ(E(1,0)). Since

σ is holomorphic, we obtain ∇⊥
∂
∂z̄

sj = σ ⊗ ∇ ∂
∂z̄
τj and |∇ ∂

∂z̄
τj |2 = |∇ ∂f

∂z̄
αj |2 ≤
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C′|∂f∂z |
2, where C′ is a positive constant independent of k and C. Hence we

have

(0.7) |∇⊥
∂
∂z̄
sj |

2 = |σ|2|∇ ∂
∂z̄
τj |

2 ≤ C′|σ|2|
∂f

∂z
|2

for j = 1, 2. If we combine the inequality (0.6) with (0.7), we obtain

C2|∇⊥
∂
∂z̄
sj |

2 ≤ C2C′|σ|2|
∂f

∂z
|2 ≤ C′D|σ|2

(

|
∂u

∂z
|2 + ε

)

.

On the other hand, it is easy to see

(0.8) C2

∫

Σ

(

|∇⊥
∂
∂z̄
s1|

2 + |∇⊥
∂
∂z̄
s2|

2
)

dxdy ≤ 2C′D

∫

Σ

|σ|2
(

|
∂u

∂z
|2 + ε

)

dxdy.

Since |s1|+ |s2| = |σ|(|τ1|+ |τ2|) ≥ |σ| on Σ, by (0.5) we also have
(0.9)

∫

Σ

(

|∇⊥
∂
∂z̄
s1|

2 + |∇⊥
∂
∂z̄
s2|

2
)

dxdy ≥
κ

4

∫

Σ

(|s1|
2 + |s2|

2)

(

|
∂u

∂z
|2 + ε

)

dxdy

≥
κ

8

∫

Σ

|σ|2
(

|
∂u

∂z
|2 + ε

)

dxdy.

By comparing two inequalities (0.8) and (0.9), we have

2C′D

∫

Σ

|σ|2
(

|
∂u

∂z
|2 + ε

)

dxdy ≥ C2

∫

Σ

(

|∇⊥
∂
∂z̄
s1|

2 + |∇⊥
∂
∂z̄
s2|

2
)

dxdy

≥
κ

8
C2

∫

Σ

|σ|2
(

|
∂u

∂z
|2 + ε

)

dxdy.

Thus it is easy to obtain 2C′D ≥ κ
8C

2, and so C should be less than or equal

to
(

16C′D
κ

)1/2

. Finally, if we take C >
(

16C′D
κ

)1/2

, then we would have a

contradiction. This completes the proof of Theorem 1. �

Note added in proof: The paper [2] is now published in Journal of Differ-
ential Geometry 91 (2012), no. 1, 41–80.
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