• Title/Summary/Keyword: position and orientation

Search Result 739, Processing Time 0.024 seconds

Monitoring of Cut-Slope Behavior with Consideration of Rock Structure and Failure Mode (개착사면의 구조적 특성과 파괴양상을 고려한 계측 해석)

  • Cho, Tae-Chin;Park, So-Young;Lee, Sang-Bae;Lee, Geun-Ho;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.451-466
    • /
    • 2006
  • Analysis of slope behavior concerning the structural characteristics of field rock mass can be processed by virtue of borehole information of joint orientation and position acquired from DOM drilled core. Anticipated sliding potential of pre-failed rock slope is analyzed and the regional slope instability is investigated by inspecting the hazardous joints and blocks the traces of which is projected on the cut-face. Cross section has been set at the center of rock slope and the traces of both joints and tetrahedral blocks, which potentially can induce the slope failure, are drawn to investigate the failure modes and the triggering mechanism. Automated monitoring system has been established to measure the slope movement and especially, inclinometer has been installed inside DOM borehole to analyze the slope movement by considering the internal rock structure. Algorithms for predicting the slope failure time have been reviewed and the significance of heavy rainfall on the slope behavior has been investigated.

Finger Detection using a Distance Graph (거리 그래프를 이용한 손가락 검출)

  • Song, Ji-woo;Oh, Jeong-su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1967-1972
    • /
    • 2016
  • This paper defines a distance graph for a hand region in a depth image and proposes an algorithm detecting finger using it. The distance graph is a graph expressing the hand contour with angles and Euclidean distances between the center of palm and the hand contour. Since the distance graph has local maximum at fingertips' position, we can detect finger points and recognize the number of them. The hand contours are always divided into 360 angles and the angles are aligned with the center of the wrist as a starting point. And then the proposed algorithm can well detect fingers without influence of the size and orientation of the hand. Under some limited recognition test conditions, the recognition test's results show that the recognition rate is 100% under 1~3 fingers and 98% under 4~5 fingers and that the failure case can also be recognized by simple conditions to be available to add.

Ten technical aspects of baseplate fixation in reverse total shoulder arthroplasty for patients without glenoid bone loss: a systematic review

  • Reinier W.A. Spek;Lotje A. Hoogervorst;Rob C. Brink;Jan W. Schoones;Derek F.P. van Deurzen;Michel P.J. van den Bekerom
    • Clinics in Shoulder and Elbow
    • /
    • v.27 no.1
    • /
    • pp.88-107
    • /
    • 2024
  • The aim of this systematic review was to collect evidence on the following 10 technical aspects of glenoid baseplate fixation in reverse total shoulder arthroplasty (rTSA): screw insertion angles; screw orientation; screw quantity; screw length; screw type; baseplate tilt; baseplate position; baseplate version and rotation; baseplate design; and anatomical safe zones. Five literature libraries were searched for eligible clinical, cadaver, biomechanical, virtual planning, and finite element analysis studies. Studies including patients >16 years old in which at least one of the ten abovementioned technical aspects was assessed were suitable for analysis. We excluded studies of patients with: glenoid bone loss; bony increased offset-reversed shoulder arthroplasty; rTSA with bone grafts; and augmented baseplates. Quality assessment was performed for each included study. Sixty-two studies were included, of which 41 were experimental studies (13 cadaver, 10 virtual planning, 11 biomechanical, and 7 finite element studies) and 21 were clinical studies (12 retrospective cohorts and 9 case-control studies). Overall, the quality of included studies was moderate or high. The majority of studies agreed upon the use of a divergent screw fixation pattern, fixation with four screws (to reduce micromotions), and inferior positioning in neutral or anteversion. A general consensus was not reached on the other technical aspects. Most surgical aspects of baseplate fixation can be decided without affecting fixation strength. There is not a single strategy that provides the best outcome. Therefore, guidelines should cover multiple surgical options that can achieve adequate baseplate fixation.

Obstacle Avoidance of a Moving Sound Following Robot using Active Virtual Impedance (능동 가상 임피던스를 이용한 이동 음원 추종 로봇의 장애물 회피)

  • Han, Jong-Ho;Park, Sook-Hee;Noh, Kyung-Wook;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.200-210
    • /
    • 2014
  • An active virtual impedance algorithm is newly proposed to track a sound source and to avoid obstacles while a mobile robot is following the sound source. The tracking velocity of a mobile robot to the sound source is determined by virtual repulsive and attraction forces to avoid obstacles and to follow the sound source, respectively. Active virtual impedance is defined as a function of distances and relative velocities to the sound source and obstacles from the mobile robot, which is used to generate the tracking velocity of the mobile robot. Conventional virtual impedance methods have fixed coefficients for the relative distances and velocities. However, in this research the coefficients are dynamically adjusted to elaborate the obstacle avoidance performance in multiple obstacle environments. The relative distances and velocities are obtained using a microphone array consisting of three microphones in a row. The geometrical relationships of the microphones are utilized to estimate the relative position and orientation of the sound source against the mobile robot which carries the microphone array. Effectiveness of the proposed algorithm has been demonstrated by real experiments.

Vision-based Sensor Fusion of a Remotely Operated Vehicle for Underwater Structure Diagnostication (수중 구조물 진단용 원격 조종 로봇의 자세 제어를 위한 비전 기반 센서 융합)

  • Lee, Jae-Min;Kim, Gon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • Underwater robots generally show better performances for tasks than humans under certain underwater constraints such as. high pressure, limited light, etc. To properly diagnose in an underwater environment using remotely operated underwater vehicles, it is important to keep autonomously its own position and orientation in order to avoid additional control efforts. In this paper, we propose an efficient method to assist in the operation for the various disturbances of a remotely operated vehicle for the diagnosis of underwater structures. The conventional AHRS-based bearing estimation system did not work well due to incorrect measurements caused by the hard-iron effect when the robot is approaching a ferromagnetic structure. To overcome this drawback, we propose a sensor fusion algorithm with the camera and AHRS for estimating the pose of the ROV. However, the image information in the underwater environment is often unreliable and blurred by turbidity or suspended solids. Thus, we suggest an efficient method for fusing the vision sensor and the AHRS with a criterion which is the amount of blur in the image. To evaluate the amount of blur, we adopt two methods: one is the quantification of high frequency components using the power spectrum density analysis of 2D discrete Fourier transformed image, and the other is identifying the blur parameter based on cepstrum analysis. We evaluate the performance of the robustness of the visual odometry and blur estimation methods according to the change of light and distance. We verify that the blur estimation method based on cepstrum analysis shows a better performance through the experiments.

Orienting the superficial inferior epigastric artery (SIEA) pedicle in a stacked SIEA-deep inferior epigastric perforator free flap configuration for unilateral tertiary breast reconstruction

  • Yu, Ya-han;Ghorra, Dina;Bojanic, Christine;Aria, Oti N.;MacLennan, Louise;Malata, Charles M.
    • Archives of Plastic Surgery
    • /
    • v.47 no.5
    • /
    • pp.473-477
    • /
    • 2020
  • Superficial inferior epigastric artery (SIEA) flaps represent a useful option in autologous breast reconstruction. However, the short-fixed pedicle can limit flap inset options. We present a challenging flap inset successfully addressed by de-epithelialization, turnover, and counterintuitive rotation. A 47-year-old woman underwent left tertiary breast reconstruction with stacked free flaps using right deep inferior epigastric perforator and left SIEA vessels. Antegrade and retrograde anastomoses to the internal mammary (IM) vessels were preferred; additionally, the thoracodorsal vessels were unavailable due to previous latissimus dorsi breast reconstruction. Optimal shaping required repositioning of the lateral ends of the flaps superiorly, which would position the ipsilateral SIEA hemi-flap pedicle lateral to and out of reach of the IM vessels. This problem was overcome by turning the SIEA flap on its long axis, allowing the pedicle to sit medially with the lateral end of the flap positioned superiorly. The de-epithelialized SIEA flap dermis was in direct contact with the chest wall, enabling its fixation. This method of flap inset provides a valuable solution for medializing the SIEA pedicle while maintaining an aesthetically satisfactory orientation. This technique could be used in ipsilateral SIEA flap breast reconstructions that do not require a skin paddle, as with stacked flaps or following nipple-sparing mastectomy.

Vision-based Autonomous Landing System of an Unmanned Aerial Vehicle on a Moving Vehicle (무인 항공기의 이동체 상부로의 영상 기반 자동 착륙 시스템)

  • Jung, Sungwook;Koo, Jungmo;Jung, Kwangyik;Kim, Hyungjin;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.262-269
    • /
    • 2016
  • Flight of an autonomous unmanned aerial vehicle (UAV) generally consists of four steps; take-off, ascent, descent, and finally landing. Among them, autonomous landing is a challenging task due to high risks and reliability problem. In case the landing site where the UAV is supposed to land is moving or oscillating, the situation becomes more unpredictable and it is far more difficult than landing on a stationary site. For these reasons, the accurate and precise control is required for an autonomous landing system of a UAV on top of a moving vehicle which is rolling or oscillating while moving. In this paper, a vision-only based landing algorithm using dynamic gimbal control is proposed. The conventional camera systems which are applied to the previous studies are fixed as downward facing or forward facing. The main disadvantage of these system is a narrow field of view (FOV). By controlling the gimbal to track the target dynamically, this problem can be ameliorated. Furthermore, the system helps the UAV follow the target faster than using only a fixed camera. With the artificial tag on a landing pad, the relative position and orientation of the UAV are acquired, and those estimated poses are used for gimbal control and UAV control for safe and stable landing on a moving vehicle. The outdoor experimental results show that this vision-based algorithm performs fairly well and can be applied to real situations.

Recognition Direction Improvement of Target Object for Machine Vision based Automatic Inspection (머신비전 자동검사를 위한 대상객체의 인식방향성 개선)

  • Hong, Seung-Beom;Hong, Seung-Woo;Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.11
    • /
    • pp.1384-1390
    • /
    • 2019
  • This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This paper proposes a technological solution for improving the recognition direction of target objects for automatic vision inspection by machine vision. This enables the automatic machine vision inspection to detect the image of the inspection object regardless of the position and orientation of the object, eliminating the need for a separate inspection jig and improving the automation level of the inspection process. This study develops the technology and method that can be applied to the wire harness manufacturing process as the inspection object and present the result of real system. The results of the system implementation was evaluated by the accredited institution. This includes successful measurement in the accuracy, detection recognition, reproducibility and positioning success rate, and achievement the goal in ten kinds of color discrimination ability, inspection time within one second and four automatic mode setting, etc.

Implementation of ROS-Based Intelligent Unmanned Delivery Robot System (ROS 기반 지능형 무인 배송 로봇 시스템의 구현)

  • Seong-Jin Kong;Won-Chang Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.610-616
    • /
    • 2023
  • In this paper, we implement an unmanned delivery robot system with Robot Operating System(ROS)-based mobile manipulator, and introduce the technologies employed for the system implementation. The robot consists of a mobile robot capable of autonomous navigation inside the building using an elevator and a Selective Compliance Assembly Robot Arm(SCARA)-Type manipulator equipped with a vacuum pump. The robot can determines the position and orientation for picking up a package through image segmentation and corner detection using the camera on the manipulator. The proposed system has a user interface implemented to check the delivery status and determine the real-time location of the robot through a web server linked to the application and ROS, and recognizes the shipment and address at the delivery station through You Only Look Once(YOLO) and Optical Character Recognition(OCR). The effectiveness of the system is validated through delivery experiments conducted within a 4-story building.

A Study on the Position of Young Casual brands to Propose Marketing Strategies of the Brands and those of the Department Stores - focused on the L-Department Store - (백화점(百貨店) 및 브랜드의 마케팅전략(戰略) 제안(提案)을 위한(爲限) 영캐주얼 브랜드의 위치(位置) 분석(分析) - L 백화점(百貨店)을 중심(中心)으로 -)

  • Yu, Ji-Hun
    • Journal of Fashion Business
    • /
    • v.8 no.4
    • /
    • pp.117-130
    • /
    • 2004
  • The purposes of this study were to find out highly market sharing young casual brands, to compare their trends of concept and competition, and to propose orientation of brand concept repositioning and marketing strategies on Department stores. Reference searching method and field searching method were used for this study. The results were as follows: 1. The brands which covered more than 50% market share included <96NY> . 2. Price range of these brands was from 130,000 to 220,000 won. The brands of upper-moderate price zone included <96NY> and they were very competitive each other. The brands of moderate price zone included and they were also very competitive between them. However, the brands of lower-moderate price zone had lower competition. This price zone might be a good point to launch new brands. 3. The main target-age of young casual zone was from 17 to 30 years. The most of brands focused on 21-25 years old, which were higher age targeted before. 4. The main concepts of these brands were 'luxury, girlish, sexy' and 'Sportism, lifestyle' were sub-concepts.