
The aim of this systematic review was to collect evidence on the following 10 technical aspects of glenoid baseplate fixation in reverse total 
shoulder arthroplasty (rTSA): screw insertion angles; screw orientation; screw quantity; screw length; screw type; baseplate tilt; baseplate 
position; baseplate version and rotation; baseplate design; and anatomical safe zones. Five literature libraries were searched for eligible clini-
cal, cadaver, biomechanical, virtual planning, and finite element analysis studies. Studies including patients >16 years old in which at least 
one of the ten abovementioned technical aspects was assessed were suitable for analysis. We excluded studies of patients with: glenoid bone 
loss; bony increased offset-reversed shoulder arthroplasty; rTSA with bone grafts; and augmented baseplates. Quality assessment was per-
formed for each included study. Sixty-two studies were included, of which 41 were experimental studies (13 cadaver, 10 virtual planning, 11 
biomechanical, and 7 finite element studies) and 21 were clinical studies (12 retrospective cohorts and 9 case-control studies). Overall, the 
quality of included studies was moderate or high. The majority of studies agreed upon the use of a divergent screw fixation pattern, fixation 
with four screws (to reduce micromotions), and inferior positioning in neutral or anteversion. A general consensus was not reached on the 
other technical aspects. Most surgical aspects of baseplate fixation can be decided without affecting fixation strength. There is not a single 
strategy that provides the best outcome. Therefore, guidelines should cover multiple surgical options that can achieve adequate baseplate 
fixation. 
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INTRODUCTION 

The worldwide incidence of reverse total shoulder arthroplasty 

(rTSA) has increased exponentially since the introduction of the 
first rTSA by Grammont et al. in 1987 [1-3]. Despite innovations 
in surgical technique and implant designs, rTSA-related compli-
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cations occur in 19%–68% of patients [4-8]. The incidence of 
baseplate loosening following rTSA ranges from 1.2% to 11.7%, 
and it usually requires revision surgery [9-13]. Revision proce-
dures following rTSA are associated with higher complication 
rates, worse functional outcomes, and decreased patient satisfac-
tion compared to those of primary rTSA [13-16]. Therefore, it is 
important to prevent revision procedures in order to improve pa-
tient outcomes. However, achieving optimal glenoid baseplate 
fixation can be challenging. Several screw- and baseplate-related 
surgical fixation aspects, such as screw placement and baseplate 
characteristics, are believed to be critical for achieving optimal 
glenoid baseplate fixation. 

Although various studies have assessed screw- and base-
plate-related surgical fixation aspects in rTSA, there is still no 
consensus on how to achieve optimal glenoid-implant fixation in 
rTSA. Insight into optimizing glenoid-implant fixation in rTSA is 
important to reduce aseptic baseplate loosening requiring revision 
surgery, scapular notching, postoperative fractures, and supras-
capular nerve (SSN) injury. Optimizing glenoid-implant fixation 
in rTSA may also improve patient outcomes. This review was per-
formed with the goal of collecting the available evidence on the 
following ten technical aspects of baseplate fixation in rTSA: 
screw insertion angles; screw orientation; screw quantity; screw 
length; screw type; baseplate tilt; baseplate position; baseplate ver-
sion and rotation; baseplate design; and anatomical safe zones. 

METHODS 

This systematic review process followed the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines and was registered in the International Prospective 
Register of Systematic Reviews (identification number 245912) 
[17]. Ethical approval is not required for this type of study under 
Dutch law. 

Search Strategy 
The literature search was conducted in PubMed, Embase, Web of 
Science, Cochrane Central Library, and Emcare using a system-
atic search strategy (Supplementary Material 1) created by a li-
brarian (JWS). The articles were selected from January 2000 to 
July 2022. The list of references was imported into EndNote (ver-
sion X9) to remove duplicate articles. The references were subse-
quently exported to the web application Rayyan for study selec-
tion. 

Study Selection 
Three authors (RWAS, LAH, and RCB) independently screened 

the titles and abstracts before assessing the full texts for eligibility. 
Any discrepancies were resolved by discussion between the au-
thors. Studies were included according to the following eligibility 
criteria: (1) inclusion of least three patients, all of whom were 
> 16 years old; (2) analysis of at least one baseplate fixation as-
pect (screw insertion angle, screw orientation, screw quantity, 
screw length, screw type, baseplate tilt, baseplate position, base-
plate version and rotation, anatomical safe zones) in rTSA; (3) 
data regarding clinical outcomes, biomechanical outcomes, and/
or anatomical outcomes. We excluded studies of patients with: (1) 
glenoid bone loss (Walch type ≥ B1); (2) bony increased off-
set-reversed shoulder arthroplasty; (3) rTSA with bone grafts; 
and (4) augmented baseplates. In addition, studies were excluded 
if the full text was unavailable, if data were not extractable or if it 
was any of the following study types: systematic review, me-
ta-analysis, conference abstract, case report (defined as inclusion 
of less than three patients), expert opinion, or animal study. Fi-
nally, the reference lists of the retrieved articles were reviewed for 
additional articles (citation snowballing). 

Critical Appraisal and Data Extraction 
Methodological quality of the clinical and cadaver studies was 
appraised using the Critical Appraisal Skills Program (CASP) 
[18] and the Quality Appraisal for Cadaveric Studies (QUACS) 
checklists [19]. The CASP checklist was classified into low ( < 8 
points) and high ( ≥ 8 points) levels of quality. The QUACS 
checklist was classified into poor ( ≤ 6 points), moderate (7–9 
points), and good ( ≥ 10 points) levels of quality. Quality assess-
ments, authors, year of publication, and data extraction of all in-
cluded studies were independently extracted by three authors 
(RWAS, LAH, and RCB). Any discrepancies were resolved by 
discussion between the authors. 

Statistical Analysis 
Data was presented using descriptive statistics. Outcomes were 
not synthesized, as it was inappropriate to generate pooled effect 
sizes due to the between-study heterogeneity in methodology 
and outcomes. A brief summary of the reviewed material was 
presented after each section. 

RESULTS 

Literature Search 
The literature search (Supplementary Material 1) identified 3,216 
records. After removing duplicates, the titles and abstracts of 
2,238 articles were screened. Thereafter, 161 full texts were as-
sessed. Of these, 60 studies fulfilled the inclusion criteria. Anoth-
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er two studies were identified by reference checking; therefore, a 
total of 62 studies were included in the quality assessment (Fig. 
1). The quality of clinical studies was low in 5 and high in 16 
studies (Supplementary Material 2). The quality of cadaver stud-
ies was poor in zero, moderate in nine, and good in four studies 
(Supplementary Material 3). As zero studies were excluded after 
quality assessment, all 62 studies were suitable for analysis, in-
cluding: 41 experimental studies (13 cadaver, 10 virtual planning, 
11 biomechanical, and 7 finite element studies) and 21 clinical 
studies (12 retrospective cohort and 9 case-control studies). 

Screw Insertion Angle 
A finite element study in which four different diverging screw in-
sertion angles (0°, 10°, 20°, and 30°) were tested showed that an 
increasing screw insertion angle resulted in reductions in the 
baseplate micromotions: 90–110 µm (screw insertion angle of 0°) 
and 48–59 µm (screw insertion angle of 30°) [20]. Meanwhile, a 
finite element study in which five different screw insertion angles 
(0°, 10°, 17°, 15°, and 34°) were analyzed showed that screw in-
sertion angles of 17° provided the most optimal stress distribu-
tion on the humeral spacer [21]. A virtual planning study deter-

mined the optimal screw insertion angle according to two sce-
narios, as follows: (1) entire intraosseous screw trajectory, exiting 
in a “safe anatomical region” (i.e., avoiding injury to the SSN, 
which runs between the 2- and 8-o’clock positions with the right 
shoulder as reference); (2) in-out-in screw trajectory with pene-
tration in the thickest cortical region regardless of anatomical 
structures [22]. The optimal screw insertion angles, according to 
this study, are summarized in Table 1. Additionally, because there 
are no important neurovascular structures located at the inferior 
scapular pillar, the authors emphasized that inferior screws 
should be angled into the inferior scapular pillar. The angles of 
the posterior and superior screws highly depend on surgeons’ 
preferences. For instance, superior screws could be directed lat-
erally or inferiorly to the suprascapular notch, whereas posterior 
screws could be angled toward the lateral scapular spine area or 
to thin cortical areas (provided that the length is short). Com-
pared with scenario 2, similar screw insertion angles for the infe-
rior screws were found in a cadaver study (n = 10), in which vari-
able and fixed baseplates were used (Tables 1 and 2) [23]. To 
summarize, there were considerable differences in optimal screw 
insertion angles described in these experimental studies. 
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3,216 Records identified through 
database searching

2,238 Records after duplicates removed

2,238 Records screened 

2 Additional records identified through 
forward and backward citation tracking 

161 Full-text articles assessed for 
eligibility 

101 Full-text articles excluded with reasons 
34 Not the population of interest
25 No outcome of interest 
23 Data not extractable 

8 Poster presentation 
4 Background article 
4 Full-text unavailable 
3 Publication describes same study population

60 Studies included in qualitative 
synthesis 

62 Studies included in systematic review

2,117 Records excluded

Fig. 1. Flowchart of included studies.
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Table 1. Optimal screw insertion angles in degrees 

First author (year) Definition Superior screw Posterior screw Anterior screw Inferior screw
DiStefano (2011) [22] Intraosseous through 

cortical bone and ex-
its a ‘‘safe region’’ 
(based on anatomical 
structures) Penetrates 
the thickest cortical 
region regardless of 
anatomical structures

9± 3 (S/I) –29± 8 (S/I) –16± 5 (S/I) –16± 7 (S/I)
–2± 5 (A/P) 3± 7 (A/P) –14± 4 (A/P) 5± 4 (A/P)
28± 6 (S/I) 23± 4 (S/I) –16± 5 (S/I) –19± 6 (S/I)
10± 6 (A/P) –3± 6 (A/P) –14± 4 (A/P) 4± 4 (A/P)

Humphrey (2008) [23] Maximized screw 
length, accomplished 
far cortical fixation, 
and attained screw 
purchase in good 
bone stock

19 (S), 5 (I) 14 (I), 7 (A)

Variable-angle base-
plate; fixed-angle 
baseplate

20(S), 20 (I) 20 (I), 20 (A)

Values are presented as mean± standard deviation.
S: superior, I: inferior, A: anterior, P: posterior.

Table 2. Overview of included studies for screw insertion angle 

First author (year) Design Brand Base plate Peg Screw Loading Conclusion
Humphrey (2008) [23] Cadaver (n= 10) Aequalis (Tornier) - - 4 Screws - Table 1
Basat (2018) [21] Finite element Delta Xtend (Depuy) 36-mm diameter 6-mm diameter, 

13-mm length
4 Screws, - Screw insertion 

angle of 17° 
provided the 
optimal stress 
distribution on 
the humeral 
spacer.

4.5-mm diameter,
24-mm length

Hopkins (2008) [20] Finite element Delta III (Depuy), - - 4 Screws, 756 N axial  
superior

Increasing the 
screw insertion 
angle resulted 
in less BP mo-
tion.

RSP neutral  
(Encore Medical), 
RSP reduced  
(Encore Medical)

3.5- or 5-mm di-
ameter, 16- or 
30-mm length

DiStefano (2011) [22] Virtual planning Aequalis (Tornier) 29-mm diameter 8-mm diameter 4 Screws - Table 1
-: not reported, BP: baseplate.

Screw Orientation 
A cadaver study (n = 20) reported no significant differences in 
baseplate micromotions measured by axial eccentric loading (0–
300 N for 600 cycles) between the baseplates secured with diver-
gent or parallel oriented screws (2.0 µm, standard error: 0.7 vs. 
4.0 µm, standard error: 1.5, respectively) [24]. Additionally, a 
biomechanical study using cycling loading (500 N for 1,000 cy-
cles) observed no significant differences in baseplate micromo-
tions among baseplates secured with neutral or divergent orient-
ed screws, as follows: inferior 247 ± 22 and 193 ± 23 µm; superior 
121±17 and 108±18 µm; anterior 180±16 and 153±17 µm; poste-
rior 188 ±22 and 148 ±23 µm [25]. Contrarily, a finite element 

study showed that baseplates secured with divergent oriented 
screws demonstrated less baseplate micromotions than did those 
secured with convergent oriented screws [26]. Likewise, another fi-
nite element study using compressive and shear load of 750 N 
demonstrated that divergent oriented screw fixation resulted in less 
baseplate stress and displacement than did baseplates secured with 
convergent or parallel oriented screws (Table 3) [27]. 

In summary, two out of four experimental studies suggested 
that baseplates should be secured with divergent oriented screws. 
In contrast, two experimental studies found no differences in 
baseplates micromotions while using different screw orienta-
tions. 
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Table 3. Overview of included studies for screw orientation 

First author (year) Design Brand Base plate Peg Screw Loading Conclusion
Lung (2019) [25] Biomechanical Delta Xtend 

(DePuy)
- 13.5- or 23.5-mm 

length
2 or 4 Screws, 18- 

or 36-mm 
length

500 N for 1,000 
cycles

Divergent versus neutral 
screw orientation: no 
differences in base 
plate motion

Abdic (2021) 
[24]

Cadaver (n= 20) Aequalis  
(Tornier)

29-mm di-
ameter

8-mm diameter 4 Screws, 4.5-
mm diameter

0–300 N for 600 
cycles

Divergent versus parallel 
screw orientation: no 
differences in base 
plate motion

Denard (2017) 
[27]

Finite element Univers Revers 
(Arthrex)

24-mm di-
ameter

6.5-mm diame-
ter, 15-mm 
length

2 Screws, Compressive and 
shear load 750 N

Divergent screws result-
ed in less base plate 
stress and displace-
ment compared to 
parallel and convergent 
orientations.

4.4-mm diameter,
24-mm length

Yang (2013) [26] Finite element Aequalis  
(Tornier)

- - - - Divergent screw orienta-
tion resulted in less 
base plate motion 
compared to conver-
gent orientations.

-: not reported.

Screw Quantity 
A cadaver study (n = 4) reported reduced baseplate micromo-
tions among baseplates secured with four screws when compared 
to those secured with two screws (18.3 ± 5.9 vs. 35.0 ± 14.9 µm; 
P = 0.01, respectively) [28]. Additionally, a biomechanical study 
in which baseplates were constructed with two, four, or six screws 
reported more displacement both pre- and post-cyclic loading 
(750 N for 10,000 cycles) in baseplates secured with two screws 
than in baseplates secured with four or six screws (two screws 
116 ± 36 and 125 ± 44 µm; four screws 82 ± 22 and 91 ± 23 µm; six 
screws 92 ± 20 and 108 ± 42 µm, pre- and post-cyclic loading, re-
spectively). However, no differences were observed between four 
versus six screws (P = 0.18 and P = 0.18, pre- and post-cyclic 
loading, respectively) [29]. Furthermore, a cadaver study (n = 10) 
analyzed the added value of the posterior screw by measuring the 
amount of vertical displacement of the glenoid component 
during cyclic loading (750 N for 50,000 cycles); this group found 
a three-fold higher rate of glenoid loosening in baseplates with-
out posterior screws compared to those with posterior screws 
[30]. Contrarily, no significant differences in baseplate displace-
ment were identified in another cadaver study (n = 12) using cy-
cling loading (650–1,000 N for 100 cycles in superior directions 
followed by 100 cycles in anterior-posterior directions). This 
group was primarily looking for mean differences in displace-
ments between two and four screws constructs of: anterior 42 
µm; posterior 41 µm; superior 13 µm; and inferior 14 µm [31]. 
Similar outcomes were reported in a biomechanical study using 

cyclic loading of 500 N for 1,000 cycles. This group found mean 
displacements between two and four screws, respectively, as fol-
lows: inferior 235 ± 23 and 205 ± 22 µm; superior 130 ± 18 and 
99 ± 17 µm; anterior 180 ± 16 and 155 ± 16 µm; posterior 187 ± 23 
and 149 ± 22 µm [25]. 

A case-control study (n = 3,180) including a biomechanical 
model using compressive loading (10 mm/min) reported that su-
perior screw insertion within four-screw constructs was associat-
ed with: a higher incidence of scapula body fractures (4.4% vs. 
0.0%, superior screws yes/no, respectively); and a lower load to 
failure (1,077 N vs. 1,970 N, superior screws yes/no, respectively) 
[32]. Similar findings were reported in a case-control study 
(n = 4,125) with a minimum follow-up of 2 years. In this study, 
patients with acromial and/or scapular spine fractures had more 
baseplate screws than did those without fractures (4.05 ± 0.51 vs. 
3.83 ± 0.79, respectively; P = 0.02) [33]. In contrast, another retro-
spective study (n= 105) showed that utilizing three or four screws 
(vs. only two screws) did not increase the odds of minor or major 
radiographic changes (Table 4) [34]. 

To summarize, three out of five experimental studies demon-
strated that baseplates should be secured with four screws. How-
ever, two out of three clinical studies reported higher occurrences 
of scapular and/or acromial fractures as the number of baseplate 
screws increases.  

Screw Length  
Five experimental studies analyzed the optimal screw lengths 
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Table 4. Overview of included studies for screw quantity 

First author (year) Design Brand Base plate Peg Screw Loading Conclusion
Lung (2019) [25] Biomechanical Delta Xtend 

(DePuy)
- 13.5- or 23.5-mm 

length
2 or 4 Screws;  

18- or 36-mm 
length

500 N for 1,000 
cycles

No differences in 
base plate motion 
between 2- and 
4-screw constructs

Roche (2019) [29] Biomechanical Equinoxe  
(Exactech)

25- or 24-mm  
diameter

- 2, 4, or 6 Screws, 750 N for 10,000 
cycles

Using 4 or 6 instead 
of 2 screws resulted 
in less base plate 
motion. No differ-
ences between 4 
versus 6 screws

4.5-mm diameter,
18- or 30- or 46-

mm length

Elwell (2017) [28] Cadaver (n= 4) - 25-mm  
diameter

8-mm diameter, 2 or 4 Screws, Direct force 686 N Using 4 instead of 2 
screws resulted in 
less base plate  
motion.

15-mm length 4.5-mm diameter

Hoenig (2010) [30] Cadaver (n= 10) Aequalis  
(Tornier)

- - 3 or 4 Screws, 750 N for 50,000 
cycles

Absence of posterior 
screws (3 screws) 
resulted in higher 
rates of glenoid 
loosening than base 
plates with posteri-
or screws (4 screws).

22- or 29-mm 
length

James (2013) [31] Cadaver (n= 12) Aequalis  
(Tornier)

- - 2 or 4 Screws 650–1,000 N for 
100 cycles supe-
rior followed by 
100 cycles ante-
rior-posterior

No differences in 
base plate motion 
between 2- and 
4-screw constructs

Routman (2020) 
[33]

Case-control 
(n= 4,125)

Equinoxe  
(Exactech)

- - - - Increased risk of 
scapular and/or  
acromial fractures 
when using more 
base plate screws

Kennon (2017) [32] Case-control 
(n= 318)  
including a 
biomechanical 
model

Equinoxe  
(Exactech)

- - 3 or 4 Screws, Compressive load 
10 mm/min

Presence of superior 
screws (4 screws) 
resulted in higher 
scapular fracture 
rates and lower load 
to failure than base 
plates without  
superior screws  
(3 screws).

4.5-mm diameter,
18- or 38-mm 

length

Lopiz (2021) [34] Retrospective 
cohort study 
(n= 105)

Delta III 
(DePuy), 
Delta Xtend 
(DePuy), 
Lima SMR  
(LimaCor-
porate)

- Standard - - 3 or 4 versus 2 screws 
did not yield higher 
odds for minor or 
major radiographic 
changes.

based on anatomical structures and/or maximum cortical fixa-
tion (Table 5) [22,23,35,36]. A finite element analysis study re-
ported a 30% reduction rate in the baseplate micromotion using 
30-mm instead of 16-mm screws [20]. Likewise, a biomechanical 
study reported lower baseplate micromotions after cycling load-
ing (500 N for 1,000 cycles) among baseplates secured with 36-

mm compared to 18-mm screws. This group described mean 
displacements with 36-mm vs. 18-mm screws, respectively, as 
follows: inferior 258 ± 23 and 182 ± 22 µm; superior 114 ± 18 and 
115 ± 17 µm; anterior 190 ± 17 and 143 ± 16 µm; posterior 
182 ± 23 and 154 ± 22 µm [25]. Additionally, a biomechanical 
study observed that the lowest baseplate displacements (both 
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pre- and post-cyclic loading 750 N for 10,000 cycles) occurred in 
baseplates secured with 46-mm screws, followed by baseplates 
secured with 30- and 18-mm screws (46-mm screws: 74 ± 15 and 
73 ± 8 µm; 30-mm screws: 101 ± 12 and 111 ± 16 µm; 18-mm 
screws: 115 ± 39 and 140 ± 45 µm, pre- and post-cyclic loading, 
respectively) [29]. The last cadaver study (n = 7) described the 
use of long screws and showed that outside-in screws, as well as 
long screws, are risk factors for scapular fractures [37]. 

A case-control study reported no significant differences in the 
screw length of posterior and superior screws between patients 
with (n = 53) or without (n = 212) scapular spine fractures (23 vs. 
22 mm, respectively) [38]. Similarly, a case-control study assessed 
the relationship between increasing screw length and the occur-
rence of acromial fractures, but did not find an association [39]. 
Additionally, a retrospective cohort study (n = 82) assessed the 
incidence of glenoid penetration and found that all posterior 
screws with a length > 20 mm (n = 82) penetrated the glenoid 
vault (Table 6) [40]. 

Taken together, seven experimental studies reported benefits 
of fixating the baseplates with screws that are at least 30 mm in 
length. Two clinical studies reported no significant differences in 
screw length between patients with or without scapular fractures. 
One clinical study strongly advised against using > 20 mm poste-
rior screws. 

Screw Type 
The authors of a biomechanical study suggested using at least 
two locking screws, because they require a higher load to failure 
(2,153 ± 115 N) compared to constructs with four non-locking 
screws (1,832 ± 35 N) (P < 0.01) [41]. Another biomechanical 
study demonstrated that baseplates secured with four locking 
screws had less baseplate micromotion than did those secured 
with four non-locking screws (P = 0.02) [42]. Contrarily, another 
biomechanical study tested four screw combinations (1 locking 

screw vs. 3 non-locking screws, 2 vs. 2, 3 vs. 1, and 4 vs. 0) using 
cyclic loading (750 N for 10,000 cycles). This group reported no 
significant differences in baseplate micromotions after cycling 
loading between the following combinations (reported with their 
mean micromotions): 1 locking screw (97.1 ± 47.2 µm); 2 locking 
screws (76.7 ± 34.5 µm); 3 locking screws (72.4 ± 15.3 µm); 4 
locking screws (68.1 ± 15.3 µm) [43]. Another biomechanical 
study analyzed the use of locking versus non-locking screws 
from another perspective. These authors concluded that if the 
central element punctured well into the cortical bone, non-lock-
ing anterior and posterior screws were sufficient. On the con-
trary, if the central element was too short, the anterior-posterior 
screws were required to have a locking function [44]. Further-
more, a cadaver study (n = 10) compared the position of locking 
screws (superior-inferior locking screws with anterior-posterior 
compression screws versus anterior-posterior locking screws 
with superior-inferior compression screws) and found no differ-
ence in micromotion between these different positions (Table 7) 
[25]. 

In summary, two out of four biomechanical studies recom-
mended securing baseplates with at least two locking screws. 
One biomechanical study showed that locking screws were par-
ticularly important if the central peg did not puncture into the 
cortical bone. The cadaver study demonstrated that the position 
of the locking screws does not improve the fixation strength.  

Baseplate Tilt  
Previous experimental studies that described the relationship be-
tween tilt and baseplate stress and impingement are contradict-
ing [27,45-48]. A retrospective cohort (n = 146) with a mean fol-
low-up of 21 months reported that scapular notching significant-
ly decreased when an inferior tilt was used. However, baseplate 
tilt angles did not affect the range of motion (ROM) or function-
al-, pain-, and satisfaction-scores [49]. Furthermore, another ret-

Table 5. Optimal screw lengths in millimeters 

First author (year) Definition Superior Posterior Anterior Inferior
Codsi (2007) [35] Maximum screw length 29 75
DiStefano (2011) [22] Intraosseous through cortical bone and exits a ‘‘safe region’’ 

(based on anatomical structures)
35 and 36 19 and 37 29 and 29 34 and 35

Penetrates the thickest cortical region regardless of anatomical 
structures

Hart (2013) [36] Maximized screw length, without damaging neurovascular 
structures

30 15 13 28

Humphrey (2008) [23] Maximized screw length, accomplished far cortical fixation, 
and attained screw purchase in good bone stock

36 and 33 47 and 43

Variable-angle baseplate, fixed-angle baseplate
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Table 6. Overview of included studies for screw length 

First author (year) Design Brand Base plate Peg Screw Loading Conclusion
Lung (2019) [25] Biomechanical Delta Xtend (DePuy) - 13.5- or 23.5-mm 

length
2 or 4 Screws, 500 N for 1,000 

cycles
Less base plate 

motion when 
using 36-mm 
screws when 
compared to 
18-mm screws

18- or 36-mm 
length

Roche (2019) [29] Biomechanical Equinoxe (Exactech) 24- or 25-
mm diam-
eter

- 2, 4, or 6 screws, 750 N for 10,000 
cycles

Lowest base plate 
motion when 
using 46-mm 
screws, fol-
lowed by 30-, 
and 18-mm 
screws

4.5-mm diame-
ter, 18- or 30- 
or 46-mm 
length

Hart (2013) [36] Cadaver (n= 10) RSP Encore (DJO 
Surgical)

- 6.5-mm diameter 4 Screws, - Table 5
5-mm diameter

Humphrey (2008) 
[23]

Cadaver (n= 10) Aequalis (Tornier) - - 4 Screws - Table 5

Hopkins (2008) 
[20]

Finite element Delta III (DePuy); 
RSP neutral (En-
core Medical); RSP 
reduced (Encore 
Medical)

- - 4 Screws, 756 N axial supe-
rior loading

Using 30-mm 
screws instead 
of 16-mm 
screws resulted 
in 30% less base 
plate motion.

3.5- or 5-mm di-
ameter,

16- or 30-mm 
length

Codsi (2007) [35] Virtual planning - - - 4-mm diameter - Table 5
DiStefano (2011) 

[22]
Virtual planning Aequalis (Tornier) 29-mm di-

ameter
8-mm diameter 4 Screws - Table 5

Otto (2013) [38] Case-control 
(n= 265)

- - - 14–30-mm 
length

- No differences in 
screw length 
between pa-
tients with or 
without scapu-
lar fractures

Cho (2021) [39] Case-control 
(n= 787)

Aequalis (Tornier), 
Equinoxe (Exact-
ech), TM Reverse 
(Zimmer), Ascend 
Flex (Tornier), 
Comprehensive 
Reverse (Biomet), 
RSP (DJO Surgi-
cal), SMR (Lima), 
Delta Xtend 
(DePuy), Anatomi-
cal shoulder (Zim-
mer)

Several Several Several - Screw size is not 
correlated with 
acromion frac-
tures.

Jang (2022) [40] Retrospective co-
hort (n= 82)

RSP (DJO Surgical), 
comprehensive 
(Biomet), Aequalis 
ascend flex (Wright 
Medical)

30-, 20-, 25-
mm diam-
eter, re-
spectively

- Length superior 
screw: 28± 4 
mm (15–35), 
posterior screw: 
18± 3 mm (14–
30)

- All posterior 
screw lengths 
> 20 mm pene-
trated the gle-
noid vault
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rospective cohort (n = 71) found no differences in the grade or 
incidence of scapular notching at a minimum of 12 months of 
follow-up between baseplates secured in neutral (0°) and inferior 
(–10° or –15°) tilt: 76.7% vs. 60.7%, respectively (P = 0.08) [50]. 
Additionally, a case-control study (n = 136) concluded that base-
plate inclination was not related to the likelihood of developing 
implant instability [51]. A retrospective cohort (n = 105) reported 
that superior tilt was associated with increased risks of scapular 
notching and signs of loosening (odds ratio [OR]: 2.52 and OR: 
8.92, respectively) [34]. However, another retrospective study 
(n = 154) described no significant difference in postoperative 
ROM, patient-reported outcomes (PROMS), scapular notching, 
and heterotopic ossification between inferior, neutral, and supe-
rior (up to 6°) glenoid baseplate inclination [52]. Comparable re-
sults were described in a retrospective case-control study (cas-
es = 34 and controls = 102); the final prosthetic glenoid inclina-
tion, as well as the change in glenoid inclination, had no influ-
ence on the risk of prosthetic instability [51]. Additionally, a co-
hort study (n = 61) concluded that glenoid inclination had no 
significant influence on clinical outcomes at a minimum fol-
low-up of 2 years [53]. Contrarily, another case-control study 
(n = 33) reported an association between baseplate tilt and im-

plant stability, as follows: –10.2° tilt in stable versus 8.3° in unsta-
ble implants (P = 0.01) [54]. Likewise, another case-control study 
(n = 97) reported a 13% instability rate at a mean follow-up of 47 
months, and the only factor found to be associated with it was 
superior tilt: OR: 1.15, P = 0.01) (Table 8) [55]. 

To summarize, the evidence is inconclusive to formulate guide-
lines with regard to baseplate tilt. Nevertheless, all prior studies 
have recommended against superior tilt. 

Baseplate Position 
Despite contradictory results, most experimental studies pre-
ferred an inferior position of the baseplate to increase the peak 
load failure and improve rotation [56-63]. A retrospective cohort 
study (n = 54) showed that patients with scapular notching had 
higher positioned baseplates (as measured from the baseplate’s 
inferior aspect to the inferior rim of the glenoid) than did those 
without scapular notching (2.8 ± 3.3 vs. 0.6 ± 2.0 mm, P = 0.03, re-
spectively) [64]. Another retrospective cohort study (n = 77) 
demonstrated that patients with inferior notching had higher 
peg-glenoid rim distances than did those without inferior notch-
ing (24.7 ± 3.0 vs. 20.1 ± 2.5 mm, P < 0.001, respectively) [65]. 
Furthermore, a retrospective cohort (n = 151) concluded that pa-

Table 7. Overview of included studies for screw type (locking vs. non-locking) 

First author (year) Design Brand Base plate Peg Screw Methods Conclusion
Chebli (2008) [41] Biomechanical Delta (DePuy) - - 4 Screws, 200 N preloaded, 

followed by 30 
mm/sec

Higher load to fail-
ure when using 
locking screws in-
stead of non-lock-
ing screws

36-mm length

Formaini (2017) 
[43]

Biomechanical RSP (DJO Global) - 6.5-mm diameter 4 Screws, 750 N for 10,000 
cycles

No differences in 
base plate motion 
when using 1 
locking screw vs. 
3 non-locking 
screws; 2 vs. 2; 3 
vs. 1; 4 vs. 0

3.5- or 5-mm  
diameter,

22-mm length

Harman (2005) 
[42]

Biomechanical Delta III 
(DePuy); RSP 
(Encore  
Medical)

23- or 27-mm 
diameter

16-mm length 4 Screws, 756 N for 1,000 
cycles

Less base plate mo-
tion when using 
locking screws

3.5- or 5-mm  
diameter

Torkan (2022) [44] Biomechanical Delta XTEND 
(DePuy)

- 13.5-mm central 
peg vs. 23.5 
mm central 
screw (diame-
ter: 6.5 mm)

2 Peripheral 
screws (anteri-
or/ posterior), 
non-locking vs. 
locking

Compressive 
loading 500 N, 
1 Hz, 1,000  
cycles

Anterior and poste-
rior holes can be 
non-locking 
screws if the cen-
tral peg purchases 
the cortical bone.

Abdic (2021) [24] Cadaver (n= 10) Aequalis (Tornier) 29 mm 8-mm-diameter 
central post

2 Compression 
and 2 locking 
screws (AP vs. 
SI)

Compressive 
loading and  
cyclic test

AP vs. SI locking 
screw position: 
similar fixation 
strength

AP: anteroposterior, SI: superoinferior.

https://doi.org/10.5397/cise.2023.0049396
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tients with scapular notching and/or osteophyte formation had 
higher positioned baseplates than did those without either scap-
ular notching or osteophyte formation (20.3 vs. 19.1 mm, respec-
tively) [66]. Moreover, a cohort study reported significantly lon-
ger peg glenoid rim distances and shorter sphere bone overhang 
distances in 13 patients with scapular notching as compared to 
58 patients without scapular notching (24.8 ± 1.6 and 2.6 ± 0.5 
mm vs. 21.9 ± 1.9 and 5.8 ± 1.9 mm, respectively). However, no 
significant differences were found in shoulder function and ac-
tive ROM between the two patient groups at the last follow-up 
(37.0 ± 3 months) [67]. A retrospective review (n = 105) with a 
minimum follow-up time of 5 years found an increased risk of 
severe scapular notching that was mainly associated with a high 
(the glenosphere grazed the inferior edge of the glenoid, OR: 
2.68) or excessively high (the glenosphere was beyond the inferi-
or edge of the glenoid, OR: 7.55) position [34]. A retrospective 
cohort (n = 97) analyzing glenoid components with ≥ 3.5 mm of 
inferior overhang versus flush glenoid components described a 
significantly lower rate of radiographic notching (37% vs. 82.5%, 
respectively), better clinical outcomes, and higher subjective 
shoulder value if the glenoid component had at least 3.5mm of 
inferior overhang as compared to a flush glenoid component 
[68]. Contrarily, another retrospective cohort (n = 147) conclud-
ed that inferior positioned baseplates were associated with in-
creased rates of scapular notching. However, baseplate positions 
were not associated with the incidence of revision surgery (28.9 
vs. 25.2 mm, P = 0.17, revision yes/no, respectively) (Table 8) 
[69]. In summary, the majority of the experimental and clinical 
studies reported benefits of fixating baseplates inferiorly. 

Baseplate Version and Rotation 
A biomechanical study analyzed the differences between five dif-
ferent glenosphere positions (20° retroversion, 10° retroversion, 
neutral position, 10° anteversion, and 20° anteversion) on im-
plant stability and concluded that baseplates should be secured in 
anteversion or a neutral position to attain the highest stability ra-
tio [70]. A finite element analysis showed that a neutral glenoid 
component produced the greatest impingement-free ROM, as 
compared to 5° anteversion and 5°, 10°, and 20° retroversion [71]. 

A case-control study (including patients with scapular spine 
fractures (n = 53) and controls without scapular spine fractures 
(n = 212), reported no significant differences in baseplate 
anteversion between the two groups [38]. The baseplate was 
anteverted in 20% of the cases and in 17.6% of the controls [38]. 
According to a finite element analysis model, the baseplate retro-
version does not need to be corrected to < 10° to provide good 
initial fixation. Instead, it can withstand the initial stresses and 

micromotion up to 25° of retroversion (Table 8) [72]. A virtual 
planning study was the only study to examine the influence of 
internal baseplate rotation; the group reported that 11° of inter-
nal rotation from the 12 o’clock position resulted in the strongest 
superior screw fixation [73]. 

Baseplate Design 
Curved back or flat back? 
A biomechanical study reported no differences in shear displace-
ment both pre- and post-cycling loading (750 N for 10,000 cy-
cles) between curved-back and flat-back baseplates [74]. Howev-
er, a virtual planning study showed better bone contact surface 
area in curved-back baseplates when compared to flat-back base-
plates (P = 0.01) despite the fact that flat-back implants had better 
screw puncture and less bone removal during fixation than did 
curved-back baseplates (P = 0.03 and P = 0.01, respectively) [75]. 
Another virtual planning study analyzed the amount of bone re-
moved during reaming in three different baseplate designs (two 
curved-back and one flat-back baseplates). This group reported 
that the amount of bone removal was the highest among 26-mm 
curved-back baseplates, followed by 29-mm flat-back and 25-
mm curved-back baseplates (Table 9) [60]. 

Circular or oval? 
Only one study examined the outcomes of circular versus oval 
baseplates. This biomechanical study showed that circular base-
plates had more shear displacement in both the superior-inferior 
and anterior-posterior directions both pre- and post-cyclic load-
ing (750 N for 10,000 cycles) than did oval baseplates (Table 9) 
[73]. 

The smaller the better? 
A cadaver study (n = 5) demonstrated that 25-mm baseplates, 
when compared to 29-mm baseplates, resulted in less baseplate 
micromotion at the inferior third of the glenoid-glenosphere in-
terface, a smaller shoulder adduction deficit, and a greater im-
pingement-free ROM [76]. However, no differences in baseplate 
displacement between 25- and 24-mm baseplates were found in a 
biomechanical study using cyclic loading (750 N for 10,000 cy-
cles) [29]. 

One retrospective cohort (n = 11) analyzed the outcomes of a 
25-mm baseplate in a cohort of relatively short patients (mean 
length: female, 156 ± 8 cm; male, 171 ± 2 cm). Despite a high rate 
of scapular notching (82%), outcomes at 3 years of follow-up 
were successful, including: no revision procedures, no radio-
graphic evidence of implant loosening and acceptable ROM, 
PROMs, and strength (Table 9) [78]. 
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In summary, one cadaver study reported superior outcomes of 
25-mm and 29-mm baseplates, whereas one biomechanical study 
found no differences in baseplate displacement between 25- and 
24-mm baseplates. One retrospective cohort demonstrated ac-
ceptable outcomes of 25-mm baseplates. 

The 2- or 1-peg design? 
A case-control study (n = 85) in which 2- and 1-peg baseplates 
were compared reported a lower rate of scapular notching, poly-
ethylene induces osteolysis, and metal screw contact when using 
2-peg baseplates [77]. However, the amount of baseplate micro-
motion following cyclic loading (750 N from 0–100,000 cycles) 
did not differ between the two constructs (47 and 43 µm, 2- and 
1-peg baseplates, respectively). 

Central peg of central screw fixation? 
A biomechanical study concluded that central screw fixation re-
sulted in less baseplate micromotion than did central peg fixa-
tion. Also, the central elements that puncture the cortical bone 
result in less micromotion than do the shorter ones, which do 
not reach the cortex [44]. 

Anatomical Safe Zones 
A virtual planning study (n = 56) described a danger zone to as-
sist surgeons to avoid SSN injury and revealed that the danger 
zone of the superior screw was located between the 2- and 
8-o’clock positions (using the 12 o’clock position of the right gle-
noid as reference) [79]. The posterior screw touched the neuro-
vascular structures in 33% of specimens in a cadaver study 
(n= 10) [36]. Additionally, another cadaver study (n= 10) showed 
that the superior and posterior screws posed the most risk to the 
SSN, with a 40% chance of touching the SSN [80]. Even higher 
rates of SSN engagement were reported in another cadaver study 
(n = 12) in which the superior screw touched the SSN in 8 (66%) 
and the posterior screw in 6 specimens (50%). This group also 
concluded that overly long screws pose a serious risk for SSN in-
jury and advised < 2 mm penetration for superior or posterior 
screws [81]. 

One retrospective study (n = 82) concluded that 13% of superi-
or screws and 65% of posterior screws penetrated the glenoid 
vault. Among the superior screws, 64% had a high-risk of iatro-
genic SSN neuropathy (screw tip placed within 5mm of the 
nerve), while only 6% of posteriorly inserted screws carried the 
same risk. Comparison analysis showed no difference in PROMs 
between the high- and low-risk (screw tip placed > 5 mm of the 
nerve) penetrations (Table 10) [40]. 

In summary, four experimental studies proved that far-cortex 

penetration by the superior and posterior screw should be avoid-
ed to minimize the likelihood of neurovascular injuries. One ex-
perimental study described a danger zone of the superior screw 
between the 2- and 8-o’clock positions (using the 12 o’clock posi-
tion of the right glenoid as reference). However, a clinical study 
showed that screw penetrations close to the SSN (high-risk) did 
not portend poorer clinical outcomes compared to screw pene-
trations far away from the nerve (low-risk). 

DISCUSSION 

As universal guidelines on baseplate fixation are lacking, this re-
view sought to provide a narrative overview of the currently 
available evidence on ten baseplate fixation aspects in rTSA. So 
far, it can be deducted that: (1) Optimal screw insertion angles 
are unknown. Therefore, until more evidence is gathered, sur-
geons should focus on adequate screw puncture in anatomical 
safe zones and driving the inferior screw into the inferior scapu-
lar pillar; (2) Finite element studies advise the use of divergent 
screw patterns only, while cadaver studies conclude that both 
parallel or divergent patterns are sufficient for adequate stability; 
(3) An increasing number of screws leads to a reduced baseplate 
micromotion, but it is also associated with a higher risk of acro-
mial fractures; (4) Posterior screws should be shorter or equal to 
20 mm, while other screws should be 30 mm or longer; (5) If the 
central element does not puncture cortical bone, peripheral ante-
rior and posterior locking screws are recommended. It is note-
worthy that apart from one study, there seems to be a benefit of 
using at least some locking screws in baseplate constructs; (6) 
The optimal baseplate tilt is unknown, but the baseplate is best 
secured inferiorly in either slight anteversion or a neutral posi-
tion; (7) There is no consensus on the best type of baseplate; and 
(8) Far cortex penetration should be avoided. Due to the lack of 
(large) clinical studies, methodological- and outcome-heteroge-
neity, these conclusions should be considered preliminary clini-
cal advice. 

Although this review is a collection of the best evidence avail-
able, several limitations should be acknowledged. First, the ma-
jority of the included studies were experimental studies. There-
fore, their shortcomings, when compared to clinical studies, 
should be taken into consideration [82-84]. Furthermore, the 
biomechanical and virtual planning studies did not consider ad-
ditional factors that are likely to affect rTSA biomechanics (e.g., 
stabilizing effects of ligaments, rotator cuff muscles, patients’ dai-
ly activities, and anatomical variations). Second, although no ca-
daver studies were judged as “poor” on quality assessment, only 
four out of 14 cadaver studies were assessed as having “good” 

https://doi.org/10.5397/cise.2023.00493102

Reinier W.A. Spek, et al.  Glenoid baseplate fixation in rTSA



Table 10. Overview of included studies for anatomical safe zones 

First author (year) Design Brand Base plate Peg Screws Conclusion
Hart (2013) [36] Cadaver (n= 10) Encore RSP (DJO 

Surgical)
- 6.5-mm  

diameter
4 Screws, The posterior screw posed 

the highest risk to neuro-
vascular structures.

5-mm diameter

Molony (2011) [80] Cadaver (n= 10) Delta Xtend 
(DePuy)

- - Mean length: inferior 
screw 36 mm (range, 
30–40 mm), anterior 
screw 29.4 mm 
(range, 26–30 mm), 
posterior screw 26.2 
mm (range, 18–32 
mm)

Superior and posterior 
screws posed the highest 
risk to the SSN.

Vance (2021) [81] Cadaver (n= 12) Not specified 
(Wright Medical)

25-mm diameter Central screw 3 Screws,
44-mm length

Superior and posterior 
screws posed the highest 
risk to the SSN.

Serious risk for SSN en-
gagement if superior or 
posterior screw penetrates 
the scapula. Recommend-
ed safe zone is < 2-mm 
penetration.

Yang (2018) [79] Virtual planning - Mean 27.7-mm 
diameter

- - Anatomical danger zone is 
located between the 2- 
and 8-o’clock position 
(using the 12 o’clock posi-
tion of the right glenoid 
as reference).

Jang (2022) [40] Retrospective 
cohort (n= 82)

RSP (DJO Surgical), 
comprehensive 
(Biomet), Aequa-
lis Ascend Flex 
(Wright Medical)

30-, 20-, 25- mm 
diameter, respec-
tively

- Length superior screw: 
28± 4 mm (15–35), 
posterior screw: 
18± 3 mm (14–30)

No difference in PROMs 
between low-risk, medi-
um-risk and high-risk

SSN: suprascapular nerve, PROM: patient-reported outcome.

quality. Third, most studies underreported their statistical results 
such as confidence intervals and/or standard deviations. Fourth, 
most included studies had methodological inconsistencies such as 
a lack of power, small sample size, short follow-up duration, and 
heterogenic outcomes. Furthermore, due to the between-study 
heterogeneity of the outcomes and patient characteristics, it was 
inappropriate to synthesize the outcomes to generate pooled effect 
sizes. In addition, this review only focused on studies including pa-
tients without glenoid bone loss, because baseplate fixation in pa-
tients with glenoid bone loss requires different fixation tech-
niques compared to patients without glenoid bone loss [85]. Sev-
eral clinical studies had to be excluded because they analyzed pa-
tients with and without glenoid bone loss, and data from these 
distinct patient groups were not extractable. A last limitation is 
that some studies used baseplate micromotion as the primary 
outcome and concluded on superiority relative to the compari-
son group, despite the fact that the amount of micromotion was 
far below the commonly accepted threshold of osseointegration 

failure (150 µm). Still, how much micromotion will result in clin-
ical adverse events such as baseplate loosening and revision sur-
gery remains unclear [86]. 

CONCLUSIONS 

Most surgical aspects of baseplate fixation can be decided with-
out affecting fixation strength. There is not a single strategy that 
provides the best outcome. Therefore, guidelines should cover 
multiple surgical options that can achieve adequate baseplate fix-
ation. This also implies that surgeons can opt for their desired 
fixation method during surgery. 
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