• 제목/요약/키워드: polynomial controllers

검색결과 26건 처리시간 0.025초

Design of $H_{\infty}$ Controller with Different Weighting Functions Using Convex Combination

  • Kim Min-Chan;Park Seung-Kyu;Kwak Gun-Pyong
    • Journal of information and communication convergence engineering
    • /
    • 제2권3호
    • /
    • pp.193-197
    • /
    • 2004
  • In this paper, a combination problem of controllers which are the same type of $H_{\infty}$ controllers designed with different weighting functions. This approach can remove the difficulty in the selection of the weighting functions. As a sub-controller, the Youla type of $H_{\infty}$ controller is used. In the $H_{\infty}$ controller, Youla parameterization is used to minimize $H_{\infty}$ norm of mixed sensitivity function by using polynomial approach. Computer simulation results show the robustness improvement and the performance improvement.

유전 알고리듬을 이용한 자기동조 제어기 (A self tuning controller using genetic algorithms)

  • 조원철;김병문;이평기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.629-632
    • /
    • 1997
  • This paper presents the design method of controller which is combined Genetic Algorithms with the Generalized minimum variance self tuning controller. It is shown that the controllers adapts to changes in the system parameters with time delays and noises. The self tuning effect is achieved through the recursive least square algorithm at the parameter estimation stage and also through the Robbins-Monro algorithm at the stage of optimizing a polynomial parameters. The computer simulation results are presented to illustrate the procedure and to show the performance of the control system.

  • PDF

Zero states polynomial-like trajectory (ZSPOT) generation

  • Ahn, Ki-Tak;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1587-1592
    • /
    • 2004
  • In the area of tracking control, it is important to design not only the controllers but also the trajectories to which a system has to follow. Position in the form of the $5^{th}$ order polynomial is often used with constraints of initial and final states. Smooth ending with possible minimum time is important for many systems to be away from vibrations or jerky motions. A simple polynomial-like trajectory generation method based on zero final state constraints is suggested and named ZSPOT. The effects of suggested method are shown through experiments in which a system follows an easy and computationally light reference trajectory.

  • PDF

Reference model generation for tracking and ending in steady final state

  • Ahn, Ki-Tak;Chung, Wan-Kyun;Youm, Young-Ii
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.101-106
    • /
    • 2003
  • In the area of tracking control, it is important to design not only the controllers but also the trajectories to which a system has to follow. $5^{th}$ order polynomial is often used with constraints of initial and final states. Smooth ending with possible minimum time is important for many systems because of vibration or jerky motions. Examples are increased with development of technology in smaller, more accurate systems. On the base of a polynomial like trajectory generation method from a paper in ACC2002 and RIC(Robust Internal-loop Compensator) control scheme of Robotics and Bio-mechanics lab. of POSTECH, generalized and expanded polynomial like trajectory generation method is showed.

  • PDF

적응제어를 위한 $H_{\infty}$ 강인제어기의 설계-다항식 접근방법 (A Study on the $H_{\infty}$ Robust Controller for Adaptive Control-polynomial approach)

  • 박승규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.936-938
    • /
    • 1996
  • The $H_{\infty}$ robust controller is designed for on-line adaptive control application by using polynomial approach. The $H_{\infty}$ robust controllers for adaptive system were designed first by Grimble. But they have a problem that two minimum costs can exist and did not minimize the conventional $H_{\infty}$ cost function which is the $H_{\infty}$ sum of weighted sensitivity and complementary sensitivity terms. In this paper, the two minimum costs problem can be avoided and the conventional $H_{\infty}$ cost function is minimized by employing the Youla parameterization and polynomial approach at the same time. In addition pole placement is possible without any relation with weighting function.

  • PDF

Nonlinear stochastic optimal control strategy of hysteretic structures

  • Li, Jie;Peng, Yong-Bo;Chen, Jian-Bing
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.39-63
    • /
    • 2011
  • Referring to the formulation of physical stochastic optimal control of structures and the scheme of optimal polynomial control, a nonlinear stochastic optimal control strategy is developed for a class of structural systems with hysteretic behaviors in the present paper. This control strategy provides an amenable approach to the classical stochastic optimal control strategies, bypasses the dilemma involved in It$\hat{o}$-type stochastic differential equations and is applicable to the dynamical systems driven by practical non-stationary and non-white random excitations, such as earthquake ground motions, strong winds and sea waves. The newly developed generalized optimal control policy is integrated in the nonlinear stochastic optimal control scheme so as to logically distribute the controllers and design their parameters associated with control gains. For illustrative purposes, the stochastic optimal controls of two base-excited multi-degree-of-freedom structural systems with hysteretic behavior in Clough bilinear model and Bouc-Wen differential model, respectively, are investigated. Numerical results reveal that a linear control with the 1st-order controller suffices even for the hysteretic structural systems when a control criterion in exceedance probability performance function for designing the weighting matrices is employed. This is practically meaningful due to the nonlinear controllers which may be associated with dynamical instabilities being saved. It is also noted that using the generalized optimal control policy, the maximum control effectiveness with the few number of control devices can be achieved, allowing for a desirable structural performance. It is remarked, meanwhile, that the response process and energy-dissipation behavior of the hysteretic structures are controlled to a certain extent.

On the Design of Simple-structured Adaptive Fuzzy Logic Controllers

  • Park, Byung-Jae;Kwak, Seong-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.93-99
    • /
    • 2003
  • One of the methods to simplify the design process for a fuzzy logic controller (FLC) is to reduce the number of variables representing the rule antecedent. This in turn decreases the number of control rules, membership functions, and scaling factors. For this purpose, we designed a single-input FLC that uses a sole fuzzy input variable. However, it is still deficient in the capability of adapting some varying operating conditions although it provides a simple method for the design of FLC's. We here design two simple-structured adaptive fuzzy logic controllers (SAFLC's) using the concept of the single-input FLC. Linguistic fuzzy control rules are directly incorporated into the controller by a fuzzy basis function. Thus some parameters of the membership functions characterizing the linguistic terms of the fuzzy control rules can be adjusted by an adaptive law. In our controllers, center values of fuzzy sets are directly adjusted by an adaptive law. Two SAFLC's are designed. One of them uses a Hurwitz error dynamics and the other a switching function of the sliding mode control (SMC). We also prove that 1) their closed-loop systems are globally stable in the sense that all signals involved are bounded and 2) their tracking errors converge to zero asymptotically. We perform computer simulations using a nonlinear plant.

$H_{\infty}$ 적응 제어기의 설계 (A Design of $H_{\infty}$ Adaptive controller)

  • 박승규;안호균;장우영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.679-681
    • /
    • 1997
  • A $H_{\infty}$ adaptive controller is designed by using polynomial approach. The $H_{\infty}$ robust controllers for adaptive system were designed by Grimble. But they did not minimize the mixed sensitivity ra cost function which is the re sum of weighted sensitivity and complementary sensitivity terms Moreover pole placement is dependent of cost function. In this paper, the mixed sensitivity re cost function is minimized by employing the Youla parameterization and polynomial approach at the same time. And pole plaement is independent of weighting function.

  • PDF

SynRM Servo-Drive CVT Systems Using MRRHPNN Control with Mend ACO

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1409-1423
    • /
    • 2018
  • Compared with classical linear controllers, a nonlinear controller can result in better control performance for the nonlinear uncertainties of continuously variable transmission (CVT) systems that are driven by a synchronous reluctance motor (SynRM). Improved control performance can be seen in the nonlinear uncertainties behavior of CVT systems by using the proposed mingled revised recurrent Hermite polynomial neural network (MRRHPNN) control with mend ant colony optimization (ACO). The MRRHPNN control with mend ACO can carry out the overlooker control system, reformed recurrent Hermite polynomial neural network (RRHPNN) control with an adaptive law, and reimbursed control with an appraised law. Additionally, in accordance with the Lyapunov stability theorem, the adaptive law in the RRHPNN and the appraised law of the reimbursed control are established. Furthermore, to help improve convergence and to obtain better learning performance, the mend ACO is utilized for adjusting the two varied learning rates of the two parameters in the RRHPNN. Finally, comparative examples are illustrated by experimental results to confirm that the proposed control system can achieve better control performance.

다변수 자기동조 제어기의 설계다항식 조정 (Design Polynomial Tuning of Multivariable Self Tuning Controllers)

  • 조원철;심태은
    • 전자공학회논문지S
    • /
    • 제36S권11호
    • /
    • pp.22-33
    • /
    • 1999
  • 본 논문에서는 시스템의 차수가 고차이고 잡음과 시간지연이 있으며 파라미터가 변하는 비최소위상 시스템에 적응할 수 있는 다변수 일반화 자기동조 제어기의 설계 하중다항식 계수들을 온-라인으로 조정하는 방법을 제안한다. 다변수 일반화 최소분산 자기동조 제어기의 파라미터는 순환최소자승법으로 추정하고 설계 하중다항식 계수들의 값은 확률근사법인 Robbins-Monro알고리듬을 이용하여 자동 조절하였다. 제안한 다변수 자기동조 방법은 극제한방법보다 간단하고 효과적이다. 컴퓨터 시뮬레이션을 통해 제안한 방법이 시스템의 파라미터가 변하고 시스템의 영점이 단위원 밖에 있는 고차 다변수 시스템에 잘 적응함을 보였다.

  • PDF