• Title/Summary/Keyword: point matching method

Search Result 454, Processing Time 0.022 seconds

SOSiM: Shape-based Object Similarity Matching using Shape Feature Descriptors (SOSiM: 형태 특징 기술자를 사용한 형태 기반 객체 유사성 매칭)

  • Noh, Chung-Ho;Lee, Seok-Lyong;Chung, Chin-Wan;Kim, Sang-Hee;Kim, Deok-Hwan
    • Journal of KIISE:Databases
    • /
    • v.36 no.2
    • /
    • pp.73-83
    • /
    • 2009
  • In this paper we propose an object similarity matching method based on shape characteristics of an object in an image. The proposed method extracts edge points from edges of objects and generates a log polar histogram with respect to each edge point to represent the relative placement of extracted points. It performs the matching in such a way that it compares polar histograms of two edge points sequentially along with edges of objects, and uses a well-known k-NN(nearest neighbor) approach to retrieve similar objects from a database. To verify the proposed method, we've compared it to an existing Shape-Context method. Experimental results reveal that our method is more accurate in object matching than the existing method, showing that when k=5, the precision of our method is 0.75-0.90 while that of the existing one is 0.37, and when k=10, the precision of our method is 0.61-0.80 while that of the existing one is 0.31. In the experiment of rotational transformation, our method is also more robust compared to the existing one, showing that the precision of our method is 0.69 while that of the existing one is 0.30.

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

Fingerprint Recognition using Connected Ridge Information between Minutiae on the Same Ridger (동일 융성 상에 존재하는 특징점 간의 연결정보를 이용한 지문인식)

  • Kim, Hyoun-Chul;Shim, Jae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.10
    • /
    • pp.764-772
    • /
    • 2001
  • This paper describes fingerprint matching algorithm using connected information between minutiae. We regard minutiae as ridge bifurcation and ridge ending. Features are composed of minutia's position, type(ridge bifurcation or ridge ending) ridge direction and connected ridge information. While the minutiae are extracted, we store connected in information between minutiae on the same ridge. They are used to find corresponding point pairs. Minutiae are aligned completely by two corresponding point pairs and point pattern matching is achieved by counting the number of overlapping pairs. It is invariable t translation and rotation. We have tested proposed method on the 445 fingerprints from 89 persons. These experimental results show that proposed algorithm improve 33% in speed.

  • PDF

3D Image Mergence using Weighted Bipartite Matching Method based on Minimum Distance (최소 거리 기반 가중치 이분 분할 매칭 방법을 이용한 3차원 영상 정합)

  • Jang, Taek-Jun;Joo, Ki-See;Jang, Bog-Ju;Kang, Kyeang-Yeong
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.5
    • /
    • pp.494-501
    • /
    • 2008
  • In this paper, to merge whole 3D information of an occluded body from view point, the new image merging algorithm is introduced after obtaining images of body on the turn table from 4 directions. The two images represented by polygon meshes are merged using weight bipartite matching method with different weights according to coordinates and axes based on minimum distance since two images merged don't present abrupt variation of 3D coordinates and scan direction is one direction. To obtain entire 3D information of body, these steps are repeated 3 times since the obtained images are 4. This proposed method has advantage 200 - 300% searching time reduction rather than conventional branch and bound, dynamic programming, and hungarian method though the matching accuracy rate is a little bit less than these methods.

  • PDF

A Study on Efficient Vehicle Tracking System using Dynamic Programming Method (동적계획법을 이용한 효율적인 차량 추적 시스템에 관한 연구)

  • Kwon, Hee-Chul
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.209-215
    • /
    • 2015
  • In the past, there have been many theory and algorithms for vehicle tracking. But the time complexity of many feature point matching methods for vehicle tracking are exponential. Also, object segmentation and detection algorithms presented for vehicle tracking are exhaustive and time consuming. Therefore, we present the fast and efficient two stages method that can efficiently track the many moving vehicles on the road. The first detects the vehicle plate regions and extracts the feature points of vehicle plates. The second associates the feature points between frames using dynamic programming.

A Study of Deburring System Using The Image Processing Technique (화상처리 기법을 이용한 디버링 시스템에 관한 연구)

  • Bae, Joon-Young;Joo, Youn-Myoung;Choi, Sang-Kyun;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.128-135
    • /
    • 2002
  • Burr is a projected part of finished workpiece. It is unavoidable and undesirable by-product of most metal cutting or shearing process. Also, it must be removed to improve the fit of machined parts, safety of workers, and the effectiveness of finishing operation. But deburring process Is one of manufacturing processes that have not been successfully automated, so deburring automation is strongly needed. This paper focused on developing a basic algorithm to find edge of workpiece and match two different image data for deburring automation which includes automatic recognition of parts, generation of deburring tool paths and edge/comer finding ability by analyzing the DXF drawing file which contains information of part geometry. As an algorithm fur corner finding, SUSAN method was chosen. It makes good performance in finding edge and corner in suitable time. And this paper suggested a simple algorithm to find matching point between CCD image and drawing file.

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

Analysis of Shadow Effect on High Resolution Satellite Image Matching in Urban Area (도심지역의 고해상도 위성영상 정합에 대한 그림자 영향 분석)

  • Yeom, Jun Ho;Han, You Kyung;Kim, Yong Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2013
  • Multi-temporal high resolution satellite images are essential data for efficient city analysis and monitoring. Yet even when acquired from the same location, identical sensors as well as different sensors, these multi-temporal images have a geometric inconsistency. Matching points between images, therefore, must be extracted to match the images. With images of an urban area, however, it is difficult to extract matching points accurately because buildings, trees, bridges, and other artificial objects cause shadows over a wide area, which have different intensities and directions in multi-temporal images. In this study, we analyze a shadow effect on image matching of high resolution satellite images in urban area using Scale-Invariant Feature Transform(SIFT), the representative matching points extraction method, and automatic shadow extraction method. The shadow segments are extracted using spatial and spectral attributes derived from the image segmentation. Also, we consider information of shadow adjacency with the building edge buffer. SIFT matching points extracted from shadow segments are eliminated from matching point pairs and then image matching is performed. Finally, we evaluate the quality of matching points and image matching results, visually and quantitatively, for the analysis of shadow effect on image matching of high resolution satellite image.

Computation of Circuit Parameters of Multiconductor Transmission Lines with Arbitrary Cross Section (임의 단말을 가진 전송선의 회로정수 산출)

  • 김종민;김종해;하상욱;라극환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.12
    • /
    • pp.1918-1925
    • /
    • 1989
  • A method for computing the capacitance and inductance matrix for 2-D multiconductor transmission lines with arbitrary cross section in dielectric medium is presented. The integral equation is obtained by using a free space Green function in conjunction with free and bound charges existing on boundary surfaces. The numerical analysis is based on the moment method using point matching and Galerkin method. And kthe scheme to reduce memory and computation time is presented for symmetric structure.

  • PDF

MultiView-Based Hand Posture Recognition Method Based on Point Cloud

  • Xu, Wenkai;Lee, Ick-Soo;Lee, Suk-Kwan;Lu, Bo;Lee, Eung-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2585-2598
    • /
    • 2015
  • Hand posture recognition has played a very important role in Human Computer Interaction (HCI) and Computer Vision (CV) for many years. The challenge arises mainly due to self-occlusions caused by the limited view of the camera. In this paper, a robust hand posture recognition approach based on 3D point cloud from two RGB-D sensors (Kinect) is proposed to make maximum use of 3D information from depth map. Through noise reduction and registering two point sets obtained satisfactory from two views as we designed, a multi-viewed hand posture point cloud with most 3D information can be acquired. Moreover, we utilize the accurate reconstruction and classify each point cloud by directly matching the normalized point set with the templates of different classes from dataset, which can reduce the training time and calculation. Experimental results based on posture dataset captured by Kinect sensors (from digit 1 to 10) demonstrate the effectiveness of the proposed method.