• 제목/요약/키워드: piezoresponse force microscopy

검색결과 12건 처리시간 0.029초

Piezoresponse Force Microscopy를 이용한 Pb(Zr,Ti)O3 세라믹의 단계적 Poling에 의한 강유전체 도메인 진화 과정 관찰 (Observation of Ferroelectric Domain Evolution Processes of Pb(Zr,Ti)O3 Ceramic Using Piezoresponse Force Microscopy)

  • 김관래
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.20-24
    • /
    • 2019
  • Ferroelectric material properties are strongly governed by domain structures and their evolution processes, but the evolution processes of complex domain patterns during a macroscopic electrical poling process are still elusive. In the present work, domain-evolution processes in a PZT ceramic near the morphotropic phase-boundary composition were studied during a step-wise electrical poling using piezoresponse force microscopy (PFM). Electron backscatter diffraction was used with the PFM data to identify the grain boundaries in the region of interest. In response to an externally the applied electric field, growth and retreat of non-$180^{\circ}$ domain boundaries wasere observed. The results indicate that ferroelectric polarization-switching nucleates and evolves in concordance with the pattern of the pre-existing domains.

Ferroelastic Domain Wall Motions in Lead Zirconate Titanate Under Compressive Stress Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae
    • 한국전기전자재료학회논문지
    • /
    • 제30권9호
    • /
    • pp.546-550
    • /
    • 2017
  • Ferroelectric properties are governed by domain structures and domain wall motions, so it is of significance to understand domain evolution processes under mechanical stress. In the present study, in situ piezoresponse force microscopy (PFM) observation under compressive stress was carried out for a near-morphotropic PZT. Both $180^{\circ}$ and $non-180^{\circ}$ domain structures were observed from PFM images, and their habit planes were identified using electron backscatter diffraction in conjunction with PFM data. By externally applied mechanical stress, needle-like $non-180^{\circ}$ domain patterns were broadened via domain wall motions. This was interpreted via phenomenological approach such that the total energy minimization can be achieved by domain wall motion rather than domain nucleation mainly due to the local gradient energy. Meanwhile, no motion was observed from curvy $180^{\circ}$ domain walls under the mechanical stress, validating that $180^{\circ}$ domain walls are not directly influenced by mechanical stress.

Nanoscale Probing of Ferroelectric Domain Switching Using Piezoresponse Force Microscopy

  • Yang, Sang Mo;Kim, Yunseok
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.340-349
    • /
    • 2019
  • In ferroelectric materials, piezoresponse force microscopy (PFM) has been widely used to explore ferroelectric domain switching. In this article, we review the fundamentals of nanoscale probing of ferroelectric domain switching using PFM, including the basic principles of PFM and a variety of PFM studies on local domain switching. We also introduce advanced PFM techniques for exploring switching behavior. Finally, we discuss several issues and perspectives in nanoscale probing of ferroelectric domain switching using PFM. PFM has played an important role in exploring switching behavior in ferroelectric materials, and it could be further developed to probe more detailed switching information.

Domain Wall Motions in a Near-Morphotropic PZT during a Stepwise Poling Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.484-488
    • /
    • 2017
  • In the present study, domain evolution processes of a near-morphotropic PZT ceramic during poling was studied using vertical piezoresponse force microscopy (PFM). To perform macroscopic poling in bulk polycrystalline PZT, poling was carried out in a stepwise fashion, and PFM scan was performed after unloading the electric field. To identify the crystallographic orientation and planes for the observed non-$180^{\circ}$ domain walls in the PFM images, compatibility theory and electron backscatter diffraction (EBSD) were used in conjunction with PFM. Accurate registration between PFM and the EBSD image quality map was carried out by mapping several grains on the sample surface. A herringbone-like domain pattern consisting of two sets of lamellae was observed; this structure evolved into a single set of lamellae during the stepwise poling process. The mechanism underlying the observed domain evolution process was interpreted as showing that the growth of lamellae is determined by the potential energy associated with polarization and an externally applied electric field.

Ferroelectricity of Bi-doped ZnO Films Probed by Scanning Probe Microscopy

  • Ben, Chu Van;Lee, Ju-Won;Kim, Jung-Hoon;Yang, Woo-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.323-323
    • /
    • 2012
  • We present ferroelectricity of Bi-doped ZnO film probed by piezoresponse force microscopy (PFM), which is one of the Scanning Probe Microscopy techniques. Perovskite ferroelectrics are limited to integration of devices into semiconductor microcircuitry due to hard adjusting their lattice structure to the semiconductor materials. Transition metal doped ZnO film is one of the candidate materials for replacing the perovskite ferroelectrics. In this study, ferroelectric characteristics of the Bi-doped ZnO grown by pulsed laser deposition were probed by PFM. The polarization switching and patterning of the ZnO films were performed by applying DC bias voltage between the AFM tips and the films with varying voltages and polarity. The PFM contrast before and after patterning showed clearly polarization switching for a specific concentration of Bi atoms. In addition, the patterned regions with nanoscale show clearly the local piezoresponse hysteresis loop. The spontaneous polarization of the ZnO film is estimated from the local piezoresponse based on the comparison with LiNbO3 single crystals.

  • PDF

Scanning Force Microscope에 의한 (001) PMN-x%PT 단결정의 도메인 구조에 대한 연구 (Investigation of Domain Structure in (001) PMN-x%PT Crystals by Scanning Force Microscope)

  • 이은구;이재갑
    • 한국재료학회지
    • /
    • 제19권6호
    • /
    • pp.300-304
    • /
    • 2009
  • The domain structures of annealed (001)-oriented $Pb(Mg_{1/3}Nb_{2/3})O_3-x%PbTiO_3$ (PMN-x%PT) crystals for x = 10, 20, 30, 35, and 40 at% were investigated by Polarized Optical Microscopy (POM) and Scanning Force Microscopy (SFM) in the piezoresponse mode. Both Polar Nano-Domains (PND) and long strip-like domains were clearly observed. The results also showed how the domain structure changed between phases with an increasing x in the PMN-x%PT crystals and the domain hierarchy on various length scales ranging from 40 nm to 0.1 mm. Distorted pseudo-cubic phase (x < 20%) consisted of PNDs that did not self-assemble into macro-domain plates. The rhombohedral phase (x = 30%) consisted of PNDs that began to self-assemble into colonies along preferred {110} planes. The monoclinic phase (x = 35%) consisted of miniature polar domains on the nm scale, whereas, the tetragonal phase (x = 40%) consisted of {001} oriented lamella domains on the mm scale that had internal nano-scale heterogeneities, which self-assembled into macro-domain plates oriented along {001} the mm scale.

광화학적 반응을 이용한 편극 패턴된 강유전체 표면에 금속 나노입자의 증착에 관한 연구 (Growth of Metal Nano-Particles on Polarity Patterned Ferroelectrics by Photochemical Reaction)

  • 박영식;김정훈;양우철
    • 한국진공학회지
    • /
    • 제20권4호
    • /
    • pp.300-306
    • /
    • 2011
  • 본 연구는 편극 패턴된 강유전체 단결정 $LiNbO_3$ (0001) 기판에 광화학적 환원반응을 이용하여 금속(Au, Ag) 나노입자를 증착시키고, 금속 입자의 종류와 표면의 극성에 따른 나노입자의 표면 분포를 원자간력현미경(AFM)으로 조사하였다. 전극 인가에 의해 주기적으로 편극 패턴된 강유전체 단결정 $LiNbO_3$ (periodically polarity-patterned $LiNbO_3$: PPLN)을 기판으로 사용하였으며, PPLN의 각 영역의 편극 방향은 Piezoresponse force microscopy로 확인하였다. 금속(Ag, Au) 나노 입자는 금속이 포함된 수용액에 PPLN 기판을 넣고, 자외선 램프로 30초에서 3분간 노출시켜 광환원 반응으로 기판에 증착시켰다. 시료 성장후, 공기 중에서 AFM을 이용하여 나노입자의 형태, 크기, 및 표면분포를 조사하였다. Ag 입자의 경우, -Z 편극 영역보다 +Z 편극 영역에 크고 밀도가 높은 나노 입자가 증착되었으며, 특히 편극 경계 부분에 가장 큰 Ag 나노입자가 증착되어, 나노선 모양으로 성장됨이 확인되었다. 그러나 Au 입자의 경우는 편극 경계부분에 입자가 증착되는 경향이 없었다. 두 입자 모두 자외선 노출시간이 증가함에 따라, 증착된 나노입자의 크기는 증가하는 경향을 보였다. 이와 같이 증착된 금속 나노입자가 강유전체의 표면편극에 따라 다른 분포로 성장되는 것을 강유전체 표면 극성에 따른 표면 밴드구조 변화, 광전 효과 및 표면의 전기장의 불균일성에 의한 수용액 속의 금속 양이온과 자외선에 의해 생성된 전자와의 광화학적 반응에 대한 모델로 논의할 것이다.

(K,Na)NbO3-based Lead-free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy

  • Zhang, Mao-Hua;Thong, Hao Cheng;Lu, Yi Xue;Sun, Wei;Li, Jing-Feng;Wang, Ke
    • 한국세라믹학회지
    • /
    • 제54권4호
    • /
    • pp.261-271
    • /
    • 2017
  • Environment-friendly $(K,Na)NbO_3-based$ (KNN) lead-free piezoelectric materials have been studied extensively in the past decade. Significant progress has been made in this field, manifesting competitive piezoelectric performance with that of lead-based, for specific application scenarios. Further understanding of the relationship between high piezoelectricity and microstructure or more precisely, ferroelectric domain structure, domain wall pinning effect, domain wall conduction and local polarization switching underpins the continuous advancement of piezoelectric properties, with the help of piezoresponse force microscopy (PFM). In this review, we will present the fundamentals of scanning probe microscopy (SPM) and its cardinal derivative in piezoelectric and ferroelectric world, PFM. Some representative operational modes and a variety of recent applications in KNN-based piezoelectric materials are presented. We expect that PFM and its combination with some newly developed technology will continue to provide great insight into piezoelectric materials and structures, and will play a valuable role in promoting the performance to a new level.

In-situ Growth of Epitaxial PbVO3 Thin Films under Reduction Atmosphere

  • Oh, Seol Hee;Jin, Hye-Jin;Shin, Hye-Young;Shin, Ran Hee;Yoon, Seokhyun;Jo, William;Seo, Yu-Seong;Ahn, Jai-Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.361.1-361.1
    • /
    • 2014
  • PbVO3 (PVO), a polar magnetic material considered as a candidate of multiferroic, has ferroelectricity along the c-axis and 2-dimensional antiferromagnetism lying in the in-plane through epitaxial growth [1,2]. PVO thin films were grown on LaAlO3 (001) substrates under reduction atmosphere from a stable Pb2V2O7 sintered target using pulsed laser deposition method. Epitaxial growth of the PVO films is possible only under Ar atmospheren with no oxygen partial pressure. X-ray diffraction was used to investigate the phase formation and texture of the films. We confirmed epitaxial growth of the PVO films with crystalline relationship of PbVO3[001]//LaAlO3[001] and PbVO3[100]//LaAlO3[100]. In addition, surface morphology of the films displays drastic changes in accordance with the growth conditions. Elongated PVO grains are related to the Pb2V2O7 pyrochlore structure. The relation between structural deformation and ferroelectricity in the PVO films was examined by local measurement of piezoresponse force microscopy.

  • PDF

Non-volatile Control of 2DEG Conductance at Oxide Interfaces

  • Kim, Shin-Ik;Kim, Jin-Sang;Baek, Seung-Hyub
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.211.2-211.2
    • /
    • 2014
  • Epitaxial complex oxide thin film heterostructures have attracted a great attention for their multifunctional properties, such as ferroelectricity, and ferromagnetism. Two dimensional electron gas (2DEG) confined at the interface between two insulating perovskite oxides such as LaAlO3/SrTiO3 interface, provides opportunities to expand various electronic and memory devices in nano-scale. Recently, it was reported that the conductivity of 2DEG could be controlled by external electric field. However, the switched conductivity of 2DEG was not stable with time, resulting in relaxation due to the reaction between charged surface on LaAlO3 layer and atmospheric conditions. In this report, we demonstrated a way to control the conductivity of 2DEG in non-volatile way integrating ferroelectric materials into LAO/STO heterostructure. We fabricated epitaxial Pb(Zr0.2Ti0.8)O3 films on LAO/STO heterostructure by pulsed laser deposition. The conductivity of 2DEG was reproducibly controlled with 3-order magnitude by switching the spontaneous polarization of PZT layer. The controlled conductivity was stable with time without relaxation over 60 hours. This is also consistent with robust polarization state of PZT layer confirmed by piezoresponse force microscopy. This work demonstrates a model system to combine ferroelectric material and 2DEG, which guides a way to realize novel multifunctional electronic devices.

  • PDF