DOI QR코드

DOI QR Code

Observation of Ferroelectric Domain Evolution Processes of Pb(Zr,Ti)O3 Ceramic Using Piezoresponse Force Microscopy

Piezoresponse Force Microscopy를 이용한 Pb(Zr,Ti)O3 세라믹의 단계적 Poling에 의한 강유전체 도메인 진화 과정 관찰

  • Kim, Kwanlae (Department of Manufacturing Systems and Design Engineering (MSDE), Seoul National University of Science and Technology (SeoulTech))
  • 김관래 (서울과학기술대학교 MSDE 학과)
  • Received : 2018.09.08
  • Accepted : 2018.09.20
  • Published : 2019.01.01

Abstract

Ferroelectric material properties are strongly governed by domain structures and their evolution processes, but the evolution processes of complex domain patterns during a macroscopic electrical poling process are still elusive. In the present work, domain-evolution processes in a PZT ceramic near the morphotropic phase-boundary composition were studied during a step-wise electrical poling using piezoresponse force microscopy (PFM). Electron backscatter diffraction was used with the PFM data to identify the grain boundaries in the region of interest. In response to an externally the applied electric field, growth and retreat of non-$180^{\circ}$ domain boundaries wasere observed. The results indicate that ferroelectric polarization-switching nucleates and evolves in concordance with the pattern of the pre-existing domains.

Keywords

JJJRCC_2019_v32n1_20_f0001.png 이미지

Fig. 1. Experimental set-up for high voltage electrical experiments.

JJJRCC_2019_v32n1_20_f0002.png 이미지

Fig. 2. Schematic of the experimental set-up for PFM.

JJJRCC_2019_v32n1_20_f0003.png 이미지

Fig. 3. Compatible non-180° and 180° domain wall in tetragonal and rhombohedral phases.

JJJRCC_2019_v32n1_20_f0004.png 이미지

Fig. 4. Electric displacement versus electric field during five poling steps.

JJJRCC_2019_v32n1_20_f0005.png 이미지

Fig. 5. (a) AFM topography image, and (b) EBSD image quality map of the identical region in the PZT sample. (c)~(h) A series of PFM images acquired during a step-wise poling process.

References

  1. G. H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999). [DOI: https://doi.org/10.1111/j.1151-2916.1999.tb01840.x]
  2. G. Arlt, Ferroelectrics, 104, 217 (1990). [DOI: https://doi.org/10.1080/00150199008223825]
  3. V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, and R. Ramesh, Nat. Mater., 2, 43 (2003). [DOI: https://doi.org/10.1038/nmat800]
  4. E. Soergel, Appl. Phys. B, 81, 729 (2005). [DOI: https://doi.org/10.1007/s00340-005-1989-9]
  5. E. Soergel, J. Phys. D: Appl. Phys., 44, 464003 (2011). [DOI: https://doi.org/10.1088/0022-3727/44/46/464003]
  6. S. V. Kalinin, A. Rar, and S. Jesse, IEEE Trans. Ultrason. Eng., 53, 2226 (2006). [DOI: https://doi.org/10.1109/TUFFC.2006.169]
  7. S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams, and A. Gruverman, Microsc. Microanal., 12, 206 (2006). [DOI: https://doi.org/10.1017/S1431927606060156]
  8. B. J. Rodriguez, C. Callahan, S. V. Kalinin, and R. Proksch, Nanotechnology, 18, 475504 (2007) [DOI: https://doi.org/10.1088/0957-4484/18/47/475504]
  9. S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf, and B. J. Rodriguez, Nanotechnology, 18, 435503 (2007). [DOI: https://doi.org/10.1088/0957-4484/18/43/435503]
  10. A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mater. Sci., 28, 101 (1998). [DOI: https://doi.org/10.1146/annurev.matsci.28.1.101]
  11. C. B. Sawyer and C. H. Tower, Phys. Rev., 35, 269 (1930). [DOI: https://doi.org/10.1103/PhysRev.35.269]
  12. Y. C. Shu and K. Bhattacharya, Philos. Mag. B, 81, 2021 (2001). [DOI: https://doi.org/10.1080/13642810108208556]
  13. R. C. Devries and J. E. Burke, J. Am. Ceram. Soc., 40, 200 (1957). [DOI: https://doi.org/10.1111/j.1151-2916.1957.tb12603.x]
  14. G. Arlt and P. Sasko, J. Appl. Phys., 51, 4956 (1980). [DOI: https://doi.org/10.1063/1.328372]
  15. B. G. Potter Jr., V. Tikare, and B. A. Tuttle, J. Appl. Phys., 87, 4415 (2000). [DOI: https://doi.org/10.1063/1.373086]