DOI QR코드

DOI QR Code

Ferroelastic Domain Wall Motions in Lead Zirconate Titanate Under Compressive Stress Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae (Department of Engineering Science, University of Oxford)
  • Received : 2017.08.07
  • Accepted : 2017.08.14
  • Published : 2017.09.01

Abstract

Ferroelectric properties are governed by domain structures and domain wall motions, so it is of significance to understand domain evolution processes under mechanical stress. In the present study, in situ piezoresponse force microscopy (PFM) observation under compressive stress was carried out for a near-morphotropic PZT. Both $180^{\circ}$ and $non-180^{\circ}$ domain structures were observed from PFM images, and their habit planes were identified using electron backscatter diffraction in conjunction with PFM data. By externally applied mechanical stress, needle-like $non-180^{\circ}$ domain patterns were broadened via domain wall motions. This was interpreted via phenomenological approach such that the total energy minimization can be achieved by domain wall motion rather than domain nucleation mainly due to the local gradient energy. Meanwhile, no motion was observed from curvy $180^{\circ}$ domain walls under the mechanical stress, validating that $180^{\circ}$ domain walls are not directly influenced by mechanical stress.

Keywords

References

  1. T. D. Nguyen, N. Deshmukh, J. M. Nagarah, T. Kramer, P. K. Purohit, M. J. Berry, and M. C. McAlpine, Nat. Nanotechnol., 7, 587 (2012). [DOI: http://dx.doi.org/10.1038/NNANO.2012.112]
  2. N. Izyumskaya, Y. I. Alivov, S. J. Cho, H. Morkoc, H. Lee, and Y. S. Kang, Crit. Rev. Solid State Mater. Sci., 32, 111 (2007). [DOI: http://dx.doi.org/10.1080/10408430701707347]
  3. G. H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999). [DOI: http://dx.doi.org/10.1111/j.1151-2916.1999.tb01840.x]
  4. C. Liu, Foundations of MEMS (Pearson Education, Inc., New Jersey, 2006), Chap. 7.
  5. V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello, and R. Ramesh, Nat. Mater., 2, 43 (2003). [DOI: http://dx.doi.org/10.1038/nmat800]
  6. G. Arlt, Ferroelectrics, 104, 217 (1990). [DOI: http://dx.doi.org/10.1080/00150199008223825]
  7. S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A.P. Baddorf, P. Gupta, H. Jain, D. B. Williams, and A. Gruverman, Microsc. Microanal., 12, 206 (2006). [DOI: http://dx.doi.org/10.1017/S1431927606060156]
  8. S. V. Kalinin and N. Balke, Adv. Energy Mater., 22, E193 (2010). [DOI: http://dx.doi.org/10.1002/adma.201001190]
  9. A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mater. Sci., 28, 101 (1998). [DOI: https://doi.org/10.1146/annurev.matsci.28.1.101]
  10. A. N. Morozovska, S. V. Svechnikov, E. A. Eliseev, S. Jesse, B. J. Rodriguez, and S. V. Kalinin, J. Appl. Phys., 102, 114108 (2007). [DOI: http://dx.doi.org/10.1063/1.2818370]
  11. S. V. Kalinin, A. Rar, and S. Jesse, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 53, 2226 (2006). [DOI: https://doi.org/10.1109/TUFFC.2006.169]
  12. E. Soergel, Appl. Phys. B, 81, 729 (2005). [DOI: https://doi.org/10.1007/s00340-005-1989-9]
  13. E. Soergel, J. Phys. D: Appl. Phys., 44, 464003 (2011). [DOI: https://doi.org/10.1088/0022-3727/44/46/464003]
  14. C. H. Ahn, T. Tybell, L. Antognazza, K. Char, R. H. Hammond, M. R. Beasley, O. Fischer, and J. M. Triscone, Science, 276, 1100 (1997). [DOI: https://doi.org/10.1126/science.276.5315.1100]
  15. S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf, and B. J. Rodriguez, Nanotechnology, 18, 435503 (2007). [DOI: https://doi.org/10.1088/0957-4484/18/43/435503]
  16. Y. C. Shu and K. Bhattacharya, Philos. Mag. B, 81, 2021 (2001). [DOI: http://dx.doi.org/10.1080/13642810108208556]
  17. A. J. Moulson and J. M. Herbert, Electroceramics : Materials, Properties, Applications (John Wiley & Sons Ltd., Chichester, 2003) Chap. 2.
  18. F. Xue, X. S. Gao, and J. M. Liu, J. Appl. Phys., 106, 114103 (2009). [DOI: http://dx.doi.org/10.1063/1.3259374]