• Title/Summary/Keyword: Domain structure

Search Result 2,216, Processing Time 0.027 seconds

ON THE SHAPE DERIVATIVE IN THE DOMAIN INCLUSION

  • Kim, Hongchul
    • Korean Journal of Mathematics
    • /
    • v.10 no.1
    • /
    • pp.75-87
    • /
    • 2002
  • The shape derivative for the domain functional will be discussed in the situation of domain inclusion. Hadamard's shape structure is sought by using the material derivative in conjunction with the domain imbedding technique.

  • PDF

Time domain earthquake response analysis method for 2-D soil-structure interaction systems

  • Kim, Doo-Kie;Yun, Chung-Bang
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.717-733
    • /
    • 2003
  • A time domain method is presented for soil-structure interaction analysis under seismic excitations. It is based on the finite element formulation incorporating infinite elements for the far field soil region. Equivalent earthquake input forces are calculated based on the free field responses along the interface between the near and far field soil regions utilizing the fixed exterior boundary method in the frequency domain. Then, the input forces are transformed into the time domain by using inverse Fourier transform. The dynamic stiffness matrices of the far field soil region formulated using the analytical frequency-dependent infinite elements in the frequency domain can be easily transformed into the corresponding matrices in the time domain. Hence, the response can be analytically computed in the time domain. A recursive procedure is proposed to compute the interaction forces along the interface and the responses of the soil-structure system in the time domain. Earthquake response analyses have been carried out on a multi-layered half-space and a tunnel embedded in a layered half-space with the assumption of the linearity of the near and far field soil region, and results are compared with those obtained by the conventional method in the frequency domain.

A Study on the Ferroelastic Domain Structure and Domain Walls (강탄성 구역구조 및 구역벽에 관한 연구)

  • 정희태;정세영
    • Korean Journal of Crystallography
    • /
    • v.11 no.1
    • /
    • pp.34-41
    • /
    • 2000
  • The group-theoretical approach analyzing the domain structure and the domain wall orientations of the ferroelastic crystal was introduced. These theoretical results were investigated by comparing them with the experimental results of several ferroelastic crystals, CsPbCl₃, Pb₃(PO₄)₂, and LiCsSO₄, which were grown by the Czochralski and solution methods, respectively. both results were agreed well and also consistent with those of previous works such s the strain method and the geometrical consideration. The group-theoretical approach showed that the ferroelastic domain walls must be the crystallographical prominent planes with fixed indices and classified by the symmetry elements characterizing the permissible domain walls. So the group-theoretical approach could be suggested as a new method for analyzing the structure of the ferroelastic domain and domain walls.

  • PDF

Structure of the Starch-Binding Domain of Bacillus cereus $\beta-Amylase$

  • Yoon, Hye-Jin;Akira, Hirata;Motoyasu, Adachi;Atsushi, Sekine;Shigeru, Utsumi;Bunzo, Mikami
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.619-623
    • /
    • 1999
  • The C-terminal starch-binding domain of Bacillus cereus $\beta$-amylase expressed in Escherichia coli was purified and crystallized using the vapor diffusion method. The crystals obtained belong to a space group of $P3_2$ 21 with cell dimensions, a=b=60.20${\AA},\; c=64.92{\AA},\; and \; \gamma = 120^{\circ}$ The structure was determined by the molecular replacement method and refined at 1.95 ${\AA}$, with R-factors of 0.181. The final model of the starch-binding domain comprised 99 amino acid residues and 108 water molecules. The starch-binding domain had a secondary structure of two 4-stranded antiparallel p-sheets similar to domain E of cyclodextrin glucanotransferase and the C-terminal starch-binding domain of glucoamylase. A comparison of the structures of these starch-binding domains revealed that the separated starch-binding domain of Bacillus cereus $\beta-Amylase$had only one starch-binding site (site 1) in contrast to two sites (site 1 and site 2) reported in the domains of cyclodextrin glucanotransferase and glucoamylase.

  • PDF

Two domain TN structure with stable TN boundaries

  • Hong, Hyung-Ki;Kim, Gi-Hong;Lee, Won-Ho;Ham, Mi-Suk;Shin, Hyun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.456-458
    • /
    • 2002
  • On the half area of a pixel, pretilt angle was decreased by UV radiation and two domain TN was induced by the pretilt difference. In this structure, ITO slit was made inside pixel electrode on the TFT substrate to stabilize domain boundaries. The result shows that this structure is more resistant to outside stress and unwanted domain deformation is prevented.

  • PDF

2D Finite Difference Time Domain Method Using the Domain Decomposition Method (영역분할법을 이용한 2차원 유한차분 시간영역법 해석)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1049-1054
    • /
    • 2013
  • In this paper, two-dimensional(2-D) Finite Difference Time Domain(FDTD) method using the domain decomposition method is proposed. We calculated the electromagnetic scattering field of a two dimensional rectangular Perfect Electric Conductor(PEC) structure using the 2-D FDTD method with Schur complement method as a domain decomposition method. Four domain decomposition and eight domain decomposition are applied for the analysis of the proposed structure. To validate the simulation results, the general 2-D FDTD algorithm for the total domain are applied to the same structure and the results show good agreement with the 2-D FDTD using the domain decomposition method.

High Level of Soluble Expression in Escherichia coli and Characterisation of the Cloned Bacillus thuringiensis Cry4Ba Domain III Fragment

  • Chayaratanasin, Poramed;Moonsom, Seangdeun;Sakdee, Somsri;Chaisri, Urai;Katzenmeier, Gerd;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.58-64
    • /
    • 2007
  • Similar to the other known structures of Bacillus thuringiensis Cry $\delta$-endotoxins, the crystal structure of the 65-kDa activated Cry4Ba toxin comprises three domains which are, from the N- to C-terminus, a bundle of $\alpha$-helices, a three-$\beta$-sheet domain, and a $\beta$-sandwich. To investigate the properties of the C-terminal domain III in isolation from the rest of the toxin, the cloned Cry4Ba-domain III was over-expressed as a 21-kDa soluble protein in Escherichia coli, which cross-reacted with anti-Cry4Ba domain III monoclonal antibody. A highly-purified domain III was obtained in a monomeric form by ion-exchange and size-exclusion FPLC. Circular dichroism spectroscopy indicated that the isolated domain III fragment distinctly exists as a $\beta$-sheet structure, corresponding to the domain III structure embodied in the Cry4Ba crystal structure. In vitro binding analysis via immuno-histochemical assay revealed that the Cry4Ba-domain III protein was able to bind to the apical microvilli of the susceptible Stegomyia aegypti larval midguts, albeit at lower-binding activity when compared with the full-length active toxin. These results demonstrate for the first time that the C-terminal domain III of the Cry4Ba mosquito-larvicidal protein, which can be isolated as a native folded monomer, conceivably participates in toxin-receptor recognition.

Local structural alignment and classification of TIM barrel domains

  • Keum, Chang-Won;Kim, Ji-Hong;Jung, Jong-Sun
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.123-127
    • /
    • 2006
  • TIM barrel domain is widely studied since it is one of most common structure and mediates diverse function maintaining overall structure. TIM barrel domain's function is determined by local structural environment at the C-terminal end of barrel structure. We classified TIM barrel domains by local structural alignment tool, LSHEBA, to understand characteristics of TIM barrel domain's functionalvariation. TIM barrel domains classified as the same cluster share common structure, function and ligands. Over 80% of TIM barrels in clusters share exactly the same catalytic function. Comparing clustering result with that of SCOP, we found that it's important to know local structural environment of TIM barrel domains rather than overallstructure to understand specific structural detail of TIM barrel function. Non TIM barrel domains were associated to make different domain combination to form a different function. The relationship between domain combination, we suggested expected evolutional history. We finally analyzed the characteristics of amino acids around ligand interface.

  • PDF

In Situ Observation of Domain Structure of $NaNbO_3$ Using Polarizing Microscope (편광 현미경을 이용한 Sodium Niobate 단결정의 분역 구조 관찰)

  • 정선태
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1235-1239
    • /
    • 1997
  • Sodium niobate single crystals were grown by high temperature solution growth with Na2O/B2O3 flux. The phase transitions and domain structures of sodium niobate were observed using transmission polarizing microscope from room temperature to $650^{\circ}C$. There was imperfect extinction region within as-grown crystals and this area could be removed by heat treatment. The area existed within crystal till 3$65^{\circ}C$, in which temperature the space group of sodium niobate is changed from Pbma to Pmnm. The phase transition from Pbma to Pmnm happened abruptly with changing domain structure. At 48$0^{\circ}C$, 52$0^{\circ}C$ and 572$^{\circ}C$, the colors and walls of domains were changed. All domains disappeared and the space group of sodium niobate was changed from P4/mbm to Pm3m at 64$0^{\circ}C$. When sodium niobate changed from high temperature phase to low temperature phase, the memory effect of domain structure was not observed.

  • PDF

Soil-Structure Interaction Analysis in the Time Domain Using Explicit Frequency-Dependent Two Dimensional Infinite Elements (명시적 주파수종속 2차원 무한요소를 사용한 지반-구조물 상호작용의 시간영역해석)

  • 윤정방;김두기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.42-49
    • /
    • 1997
  • In this paper, the method for soil-structure interaction analyses in the time domain is proposed. The far field soil region which is the outside of the artificial boundary is modeled by using explicit frequency-dependent two dimensional infinite elements which can include multiple wave components propagating into the unbounded medium. Since the dynamic stiffness matrix of the far field soil region using the proposed infinite elements is obtained explicitly in terms of exciting frequencies and constants in the frequency domain, the matrix can be easily transformed into the displacement unit-impulse response matrix, which corresponds to a convolution integral of it in the time domain. To verify the proposed method for soil-structure interaction analyses in the time domain, the displacement responses due to an impulse load on the surface of a soil layer with the rigid bed rock are compared with those obtained by the method in the frequency domain and those by models with extend finite element meshes. Good agreements have been found between them.

  • PDF