DOI QR코드

DOI QR Code

Domain Wall Motions in a Near-Morphotropic PZT during a Stepwise Poling Observed by Piezoresponse Force Microscopy

  • Kim, Kwanlae (Department of Engineering Science, University of Oxford)
  • Received : 2017.08.08
  • Accepted : 2017.08.21
  • Published : 2017.09.27

Abstract

In the present study, domain evolution processes of a near-morphotropic PZT ceramic during poling was studied using vertical piezoresponse force microscopy (PFM). To perform macroscopic poling in bulk polycrystalline PZT, poling was carried out in a stepwise fashion, and PFM scan was performed after unloading the electric field. To identify the crystallographic orientation and planes for the observed non-$180^{\circ}$ domain walls in the PFM images, compatibility theory and electron backscatter diffraction (EBSD) were used in conjunction with PFM. Accurate registration between PFM and the EBSD image quality map was carried out by mapping several grains on the sample surface. A herringbone-like domain pattern consisting of two sets of lamellae was observed; this structure evolved into a single set of lamellae during the stepwise poling process. The mechanism underlying the observed domain evolution process was interpreted as showing that the growth of lamellae is determined by the potential energy associated with polarization and an externally applied electric field.

Keywords

References

  1. G. Arlt, Ferroelectrics, 104, 217 (1990). https://doi.org/10.1080/00150199008223825
  2. J. Wang, S. -Q. Shi, L. -Q. Chen, Y. Li and T. -Y. Zhang, Acta Mater., 52, 749 (2004). https://doi.org/10.1016/j.actamat.2003.10.011
  3. B. G. Potter, V. Tikare and B. A. Tuttle, J. Appl. Phys., 87, 4415 (2000). https://doi.org/10.1063/1.373086
  4. J. Britson, P. Gao, X. Pan and L. Q. Chen, Acta Mater., 112, 285 (2016). https://doi.org/10.1016/j.actamat.2016.04.026
  5. H. Guo, X. Liu, F. Xue, L. Q. Chen, W. Hong and X. Tan, Phys. Rev. B, 93, 174114 (2016). https://doi.org/10.1103/PhysRevB.93.174114
  6. J. L. Hart, S. Liu, A. C. Lang, A. Hubert, A. Zukauskas, C. Canalias, R. Beanland, A. M. Rappe, M. Arredondo and M. L. Taheri, Phys. Rev. B, 94, 174104 (2016). https://doi.org/10.1103/PhysRevB.94.174104
  7. E. Soergel, Appl. Phys. B., 81, 729 (2005).
  8. S. V. Kalinin, A. Rar and S. Jesse, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 2226 (2006). https://doi.org/10.1109/TUFFC.2006.169
  9. S. V. Kalinin and N. Balke, Adv. Energy Mater., 22, E193 (2010). https://doi.org/10.1002/adma.201001190
  10. E. Soergel, J. Phys. D. Appl. Phys., 44, 464003 (2011). https://doi.org/10.1088/0022-3727/44/46/464003
  11. D. Denning, J. Guyonnet and B. J. Rodriguez, Int. Mater. Rev., 61, 46 (2016). https://doi.org/10.1179/1743280415Y.0000000013
  12. B. J. Rodriguez, C. Callahan, S. V. Kalinin and R. Proksch, Nanotechnology, 18, 475504 (2007). https://doi.org/10.1088/0957-4484/18/47/475504
  13. S. Jesse, S. V. Kalinin, R. Proksch, A. P. Baddorf and B. J. Rodriguez, Nanotechnology, 18, 435503 (2007). https://doi.org/10.1088/0957-4484/18/43/435503
  14. S. V. Kalinin, E. Strelcov, A. Belianinov, S. Somnath, R. K. Vasudevan, E. J. Lingerfelt, R. K. Archibald, C. Chen, R. Proksch, N. Laanait and S. Jesse, ACS nano, 10, 9068 (2016). https://doi.org/10.1021/acsnano.6b04212
  15. S. V. Kalinin, B. J. Rodriguez, S. Jesse, J. Shin, A. P. Baddorf, P. Gupta, H. Jain, D. B. Williams and A. Gruverman, Microsc. Microanal., 12, 206 (2006).
  16. A. Gruverman, O. Auciello and H. Tokumoto, Annu. Rev. Mater. Sci., 28, 101 (1998). https://doi.org/10.1146/annurev.matsci.28.1.101
  17. C. B. Sawyer and C. H. Tower, Phys. Rev., 35, 269 (1930). https://doi.org/10.1103/PhysRev.35.269
  18. Y. C. Shu, K. Bhattacharya, Philos. Mag. B, 81, 2021 (2001). https://doi.org/10.1080/13642810108208556
  19. X. Y. Qi, H. H. Liu and X. F. Duan, Appl. Phys. Lett., 89, 092908 (2006). https://doi.org/10.1063/1.2345231