• Title/Summary/Keyword: petroleum resin

Search Result 51, Processing Time 0.027 seconds

Advanced 'green' composites

  • Netravali, Anil N.;Huang, Xiaosong;Mizuta, Kazuhiro
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.269-282
    • /
    • 2007
  • Fully biodegradable high strength composites or 'advanced green composites' were fabricated using yearly renewable soy protein based resins and high strength liquid crystalline cellulose fibers. For comparison, E-glass and aramid ($Kevlar^{(R)}$) fiber reinforced composites were also prepared using the same modified soy protein resins. The modification of soy protein included forming an interpenetrating network-like (IPN-like) resin with mechanical properties comparable to commonly used epoxy resins. The IPN-like soy protein based resin was further reinforced using nano-clay and microfibrillated cellulose. Fiber/resin interfacial shear strength was characterized using microbond method. Tensile and flexural properties of the composites were characterized as per ASTM standards. A comparison of the tensile and flexural properties of the high strength composites made using the three fibers is presented. The results suggest that these green composites have excellent mechanical properties and can be considered for use in primary structural applications. Although significant additional research is needed in this area, it is clear that advanced green composites will some day replace today's advanced composites made using petroleum based fibers and resins. At the end of their life, the fully sustainable 'advanced green composites' can be easily disposed of or composted without harming the environment, in fact, helping it.

The Variation of Offset Ink Properties According to Methyl Ester of Soy Oil and Resin Molecular Weight (대두유의 Methyl Ester와 수지 분자량에 따른 평판 잉크의 물성 변화에 관한 연구)

  • Park, Jung-Min;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.1
    • /
    • pp.45-59
    • /
    • 2011
  • According as gradually increasing the demand for Eco-friendly products it has been progressed fairly development at a field of printing and printing inks. The Inks are used by soy oil beginning of ink industry for preventing environment. Now it is possible to make Eco-friendly inks with vegetable ester. So it is not necessary to use petroleum-based solvents for preventing environment. But There is some problems if using vegetable ester to inks. Vegetable ester has high solubility, it causes misting and low viscosity of the Inks. So resin is required high performance. Thus, in this paper, I studied about the properties variation of the Varnish and inks According to using the phenolic modified rosin ester and Soy oil Methyl esters. The compared in order of average molecular weight by the GPC method, rheological properties were found by rotational rheometer, and emulsion behavior were compared by high speed emulsification tester.

Reinforcement of mechanical properties in unsaturated polyester resin with nanosheet

  • Vahid Zarei
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.81-90
    • /
    • 2024
  • In the oil and gas industry, composite materials should exhibit high flexibility and strength for offshore structures. Therefore, weak points in the composites should be improved, such as brittleness, moisture penetration, and diffusion of detrimental ions into nanometric pores. This study aimed to increase the strength, flexibility, and plugging of nanopores using single-layer graphene oxide (SGO) nanosheets. Therefore, SGO is added to unsaturated polyester resin at concentrations of 0.015 and 0.15 % with Normal Methyl Pyrrolidone (NMP) as a solvent for the formation of Nanographene Oxide Reinforced Polymer (NGORP). The mechanical properties of the prepared samples were tested using tensile testing (ASTM-D 638). It has been shown that incorporating SGO, approximately 0.015%, into the base resin resulted in enhanced properties such as rupture resistance forces increased by 745.61 N, applied stress tolerances increased by 4.1 MPa, longitude increased to 1.58 mm, elongation increased by about 2.38%, and rupture energy increased by about 204.51 J. Despite the decrease in tensile force strength properties in the manufactured nanocomposite with 0.15% SGO, it has exclusive flexibility properties such as a high required energy level for rupture of 5,576 times and a formability of 40% more than the base sample. It would be best to use NGORP manufactured from 0.015% nanosheets with exclusive properties rather than base samples for constructing parts and equipment, such as rebars, composite sheets, and transmission pipes, on offshore platforms.

Inhibitory Effect of Aged Petroleum Hydrocarbons on the Survival of Inoculated Microorganism in a Crude-Oil-Contaminated Site

  • Kang, Yoon-Suk;Park, Youn-Jong;Jung, Jae-Joon;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1672-1678
    • /
    • 2009
  • We studied the effects of aged total petroleum hydrocarbons (aged TPH) on the survival of allochthonous diesel-degrading Rhodococcus sp. strain YS-7 in both laboratory and field investigations. The aged TPH extracted from a crude-oil-contaminated site were fractionized by thin-layer chromatography/flame ionization detection (TLC/FID). The three fractions identified were saturated aliphatic (SA), aromatic hydrocarbon (AH), and asphaltene-resin (AR). The ratio and composition of the separated fractions in the aged TPH were quite different from the crude-oil fractions. In the aged TPH, the SA and AH fractions were reduced and the AR fraction was dramatically increased compared with crude oil. The SA and AH fractions (2 mg/l each) of the aged TPH inhibited the growth of strain YS-7. Unexpectedly, the AR fraction had no effect on the survival of strain YS-7. However, crude oil (1,000 mg/l) did not inhibit the growth of strain YS-7. When strain YS-7 was inoculated into an aged crude-oil-contaminated field and its presence was monitored by fluorescent in situ hybridization (FISH), we discovered that it had disappeared on 36 days after the inoculation. For the first time, this study has demonstrated that the SA and AH fractions in aged TPH are more toxic to an allochthonous diesel-degrading strain than the AR fraction.

Jet-Fuel-Resistant PVC Sealant Containing a Polyester Plasticizer (폴리에스터 가소제를 사용한 내제트유성 PVC계 실란트)

  • Nam, Byeong-Uk;Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.342-353
    • /
    • 2003
  • This work is about the development of jet-fuel resistant PVC sealant using a polyester plasticizer. PVC copolymer was compounded with adipic acid glycol(Songcizer P-3000) or DOP plasticizers. Fuel-immersed and non-immersed penetration, solubility, flow, and elongation by tensile adhesion of PVC compounds were measured. Penetration increase by fuel immersion and solubility of PVC compounds with adipic acid glycol polyester plasticizer were smaller than those of PVC compounds with DOP plasticizer. Elongation by tensile adhesion test of PVC compound containing 500 phr of Songcizer P-3000 decreased proportionally to the content of DCDP (dicyclopentadiene) base petroleum resin adhesion promoter. Calcium carbonate($CaCO_3$) filler inhibited the diffusion of fuel in all the PVC compounds and decreased the solubility of PVC compounds containing Songcizer P-3000.

Properties of Pressure-Sensitive Rubber Adhesive in a Heat Shrinkable Sheet for the Protection of Welded Part of Gas Pipe Line (가스 배관 용접부 방식용 열 수축 쉬-트의 고무계 점착제 물성)

  • Song Sung-Ku;Hwang Kyu-Suk;Kim Wonho;Chung Kyung-Young;Bae Jong-Woo;Choi Heung-Hwan;Lee Seong-Min;Shin Sung-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.1-11
    • /
    • 1998
  • To increase peel strength, low temperature properties and flowability of pressure sensitive adhesives(PSA) used in a heat shrinkable sheet, these properties were evaluated by changing each components in type and content. In this study, Isobutylene-co-Isoprene Rubber (IIR) which has good wetherability was selected as a base polymer. Instead of rosin ester, petroleum resin was selected as a tackifier because of superior peel strength. By decreasing petroleum resin contents, flowability of PSA was decreased. High molecular weight of polybutene was better than low molecular weight for the peel strength of PSA. Large particle size of carbon black showed better properties than small one in peel strength and brittleness temperature. By adding calcium carbonate, the cost of compound was able to be reduced. But it must be used with carbon black.

  • PDF

Adsorption of Uranium (VI) Ion on Synthetic Resin Adsorbent with Styrene Hazardous Materials (Styrene 위험물을 포함한 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.165-171
    • /
    • 2009
  • Resins were synthesized by mixing 1-aza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) and divinylbenzene (DVB) copolymer with crosslinkage of 1%, 2%, 8%, and 16% by substitution reaction. The characteristic of these resins was confirmed by content of chlorine, element analysis, thermogravimetric analysis (TGA), surface area (BET), and IR-spectroscopy. The effects of pH, time, dielectric constant of solvent and crosslinkage on adsorption of metal ion by the synthetic resin adsorbent were investigated. The metal ion showed a fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in an increasing order of uranium $(UO_2^{2+})$ > lead $(Pb^{2+})$ > chromium $(Cr^{3+})$ ion. The adsorption was in the order of 1%, 2%, 8%, and 16% crosslinkage resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

Study on the Liquefaction Characteristics of ABS Resin in a Low-Temperature Pyrolysis (ABS 수지의 저온 열분해에 의한 액화특성 연구)

  • Choi, Hong Jun;Jeong, Sang Mun;Lee, Bong-Hee
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.417-422
    • /
    • 2011
  • The low temperature pyrolysis of ABS resin has been carried out in a batch reactor under the atmospheric pressure. The effect of the reaction temperature on the yield of pyrolytic oils has been determined in the present study. The oil products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The conversion reaches 80% after 60 min at $500^{\circ}C$ in the pyrolysis of ABS resin. The amount of the final product was ranked as gas heavy oil > gasoline > gas oil > kerosen based on the yield. The yields of heavy oil and gas oil increase with an increase in the reaction time and temperature.

Improving Impact Resistance of Polymer Concrete Using CNTs

  • Daghash, Sherif M.;Soliman, Eslam M.;Kandil, Usama F.;Taha, Mahmoud M. Reda
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.539-553
    • /
    • 2016
  • Polymer concrete (PC) has been favoured over Portland cement concrete when low permeability, high adhesion, and/or high durability against aggressive environments are required. In this research, a new class of PC incorporating Multi-Walled Carbon Nanotubes (MWCNTs) is introduced. Four PC mixes with different MWCNTs contents were examined. MWCNTs were carefully dispersed in epoxy resin and then mixed with the hardener and aggregate to produce PC. The impact strength of the new PC was investigated by performing low-velocity impact tests. Other mechanical properties of the new PC including compressive, flexural, and shear strengths were also characterized. Moreover, microstructural characterization using scanning electron microscope and Fourier transform infrared spectroscopy of PC incorporating MWCNTs was performed. Impact test results showed that energy absorption of PC with 1.0 wt% MWCNTs by weight of epoxy resin was significantly improved by 36 % compared with conventional PC. Microstructural analysis demonstrated evidence that MWCNTs significantly altered the chemical structure of epoxy matrix. The changes in the microstructure lead to improvements in the impact resistance of PC, which would benefit the design of various PC structural elements.

Adsorption of Metal Ions on Synthetic Resin with Styrene Hazardous Materials in Water Fire Extinguishing Agent (물 소화약제에서 스타이렌 위험물을 포함한 합성수지에 의한 금속 이온들의 흡착)

  • Lee, Chi-Young;Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.142-147
    • /
    • 2010
  • Cryptand resins have been synthesized from 1-aza-18-crown-6 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) divinylbenzene copolymer with crosslinkage of 1%, 2%, 10%, and 18% by substitution reaction. The synthesis of these resins was confirmed by the content of chlorine, element analysis, surface area (BET), and IR-spectroscopy. The effects of pH, time and crosslinkage on adsorption of metal ion from water fire extinguishing agentby synthetic resin adsorbent were investigated. Metal ions showed a great adsorption over pH 3 and adsorption equilibriumof metal ions was about two hours. The adsorption selectivity determined in water was in the increasing order of sodium ($Na^{1+}$) > zinc ($Zn^{2+}$) > chromium ($Cr^{3+}$) ion. The adsorption was in the order of 1%, 2%, 10%, and 18% crosslinkage resin.