Adsorption of Uranium (VI) Ion on Synthetic Resin Adsorbent with Styrene Hazardous Materials

Styrene 위험물을 포함한 합성수지 흡착제에 의한 우라늄(VI) 이온의 흡착

  • Received : 2009.01.06
  • Accepted : 2009.02.10
  • Published : 2009.04.10

Abstract

Resins were synthesized by mixing 1-aza-15-crown-5 macrocyclic ligand attached to styrene (2th petroleum in 4th class hazardous materials) and divinylbenzene (DVB) copolymer with crosslinkage of 1%, 2%, 8%, and 16% by substitution reaction. The characteristic of these resins was confirmed by content of chlorine, element analysis, thermogravimetric analysis (TGA), surface area (BET), and IR-spectroscopy. The effects of pH, time, dielectric constant of solvent and crosslinkage on adsorption of metal ion by the synthetic resin adsorbent were investigated. The metal ion showed a fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in ethanol was in an increasing order of uranium $(UO_2^{2+})$ > lead $(Pb^{2+})$ > chromium $(Cr^{3+})$ ion. The adsorption was in the order of 1%, 2%, 8%, and 16% crosslinkage resin and adsorption of resin decreased in proportion to the order of dielectric constant of solvents.

1%, 2%, 8% 및 16%의 가교도를 가진 스타이렌(제4류 위험물 중 제2석유류) 디비닐벤젠 공중합체에 1-aza-15-crown-5 거대고리 리간드를 치환반응으로 결합시켜 수지를 합성하였으며, 이들 수지의 특성을 염소 함량, 원소 분석, 열 중량 분석, 비표면적(BET), 그리고 적외선 분광법으로 확인하였다. 수지 흡착제에 대한 금속 이온의 흡착에 미치는 pH, 시간, 수지의 가교도 그리고 용매의 유전상수에 따른 영향들을 조사한 결과 금속 이온들은 pH 3 이상에서 큰 흡착율을 보였으며, 금속 이온들의 흡착 평형은 2 h 정도였다. 한편, 에탄올 용매에서 수지에 대한 흡착 선택성은 우라늄$(UO_2^{2+})$ > 납$(Pb^{2+})$ > 크롬$(Cr^{3+})$ 이온이었고, 금속 이온의 흡착력은 1%, 2%, 8% 및 16%의 가교도 순이며, 용매의 유전상수 크기에 반비례하였다.

Keywords

References

  1. Y. G. Ha, J. Kor. Chem. Soc., 23, 136 (1979)
  2. K. W. Chi, Y. S. Ahn, K. T. Shim, H. Huh, and J. S. Ahn, Bull. Kor. Chem. Soc., 23, 688 (2002) https://doi.org/10.5012/bkcs.2002.23.5.688
  3. H. K. Frensdorff, J. Am. Chem. Soc., 93, 4684 (1971) https://doi.org/10.1021/ja00748a006
  4. P. G. Grimslery, L. F. Lindoy, H. C. Lip, R. J. Smith, and J. T. Baker, Aust. J. Chem., 30, 2095 (1977) https://doi.org/10.1071/CH9772095
  5. L. F. Lindoy, K. R. Adam, D. S. Bladwine, A. Bashall, M. McPartlin, and H. R. Powell, J. Chem. Soc., Dalton Trans., 237 (1994)
  6. M. A. Ahearn, J. Kim, A. J. Leong, L. F. Lindoy, G. V. Meehan, and O. A. Mattews, J. Chem. Soc., Dalton Trans., 3591 (1996)
  7. K. S. Huh and S. G. Sin, J. Korean Ind. Eng. Chem., 9, 680 (1998)
  8. H. D. Jeong, D. S. Kim, and K. I. Kim, J. Korean Ind. Eng. Chem., 16, 123 (2005)
  9. J. K. Choi, H. S. Yang, and Y. C. Noh, J. Korean Ind. Eng. Chem., 12, 730 (2001)
  10. G. Bombieri and G. Depaoli, J. Chem. Acta., 18, 123 (1976)
  11. T. Hayashita, J. H. Lee, S. Chem, and R. A. Bartsch, Anal. Chem., 63, 1844 (1991) https://doi.org/10.1021/ac00017a032
  12. E. Blasius and K. P. Janzen, Pure & Appl. Chem., 54, 2115 (1982) https://doi.org/10.1351/pac198254112115
  13. H. Egawa, T. Nonaka, and M. Ikari, J. Appl. Poly. Sci., 29, 2045 (1984) https://doi.org/10.1002/app.1984.070290613
  14. K. S. Choi, K. S. Joe, S. H. Han, and K. S. Song, Anal. Sci. & Tech., 21, 397 (2008)
  15. J. S. Lee and B. S. Choi, Anal. Sci. & Tech., 21, 272 (2008)
  16. S. K. Park and J. T. Kim, J. Korean Ind. Eng. Chem., 13, 765 (2002)
  17. M. Y. Suh, T. Y. Eom, I. S. Suh, and S. J. Kim, Bull. Kor. Chem. Soc., 8, 366 (1987)
  18. S. M. Howdle, K. Jerabek, V. Leocorbo, P. C. Marr, and D. C. Sherrington, Polymer, 41, 7272 (2000)
  19. Y. Marcus, Introduction to liquid state chemistry, 250, John Wiley & Sons (1977)
  20. C. J. Pederson, J. Am. Chem. Soc., 92, 386 (1970) https://doi.org/10.1021/ja00705a605