DOI QR코드

DOI QR Code

Reinforcement of mechanical properties in unsaturated polyester resin with nanosheet

  • Vahid Zarei (Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University (IAU))
  • Received : 2021.04.13
  • Accepted : 2023.11.23
  • Published : 2024.01.25

Abstract

In the oil and gas industry, composite materials should exhibit high flexibility and strength for offshore structures. Therefore, weak points in the composites should be improved, such as brittleness, moisture penetration, and diffusion of detrimental ions into nanometric pores. This study aimed to increase the strength, flexibility, and plugging of nanopores using single-layer graphene oxide (SGO) nanosheets. Therefore, SGO is added to unsaturated polyester resin at concentrations of 0.015 and 0.15 % with Normal Methyl Pyrrolidone (NMP) as a solvent for the formation of Nanographene Oxide Reinforced Polymer (NGORP). The mechanical properties of the prepared samples were tested using tensile testing (ASTM-D 638). It has been shown that incorporating SGO, approximately 0.015%, into the base resin resulted in enhanced properties such as rupture resistance forces increased by 745.61 N, applied stress tolerances increased by 4.1 MPa, longitude increased to 1.58 mm, elongation increased by about 2.38%, and rupture energy increased by about 204.51 J. Despite the decrease in tensile force strength properties in the manufactured nanocomposite with 0.15% SGO, it has exclusive flexibility properties such as a high required energy level for rupture of 5,576 times and a formability of 40% more than the base sample. It would be best to use NGORP manufactured from 0.015% nanosheets with exclusive properties rather than base samples for constructing parts and equipment, such as rebars, composite sheets, and transmission pipes, on offshore platforms.

Keywords

References

  1. Bora, C., Gogoi, P., Baglari, S. and Dolui, S.K. (2013), "Preparation of polyester resin/graphene oxide nanocomposite with improved mechanical strength", J. Appl. Polym. Sci., 129(6), 3432-3438. https://doi.org/10.1002/app.39068
  2. Bouguerra, K., Ahmed, E.A., El-Gamal, S. and Benmokrane, B. (2011), "Testing of full-scale concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars", Constr. Build. Mater., 25(10), 3956-3965. https://doi.org/10.1016/j.conbuildmat.2011.04.028
  3. Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concr., 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155
  4. Chandradass, J., Ramesh Kumar, M. and Velmurugan, R. (2008), "Effect of clay dispersion on mechanical, thermal and vibration properties of glass fiber-reinforced vinyl ester composites", J. Reinforc. Plast. Compos., 27(15), 1585-1601. https://doi.org/10.1177/0731684407081368
  5. Davis, M.E. (2002), "Ordered porous materials for emerging applications", Nature, 417(6891), 813-821. https://doi.org/10.1038/nature00785
  6. Esmaeilzadeh, M., Golmakani, M.E., Kadkhodayan, M., Amoozgar, M. and Bodaghi, M. (2021), "Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates", Adv. Nano Res., 10(2), 151. https://doi.org/10.12989/anr.2021.10.2.151
  7. Farazin, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: A molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. https://doi.org/10.12989/anr.2020.9.2.083
  8. Feng, Y., Zarei, V. and Mousavipour, N. (2023), "Provision and assessment properties of nanoliposomes containing macroalgae extracts of Sargassum boveanume and Padina pavonica", LWT, 175, 114194. https://doi.org/10.1016/j.lwt.2022.114194
  9. Hammami, A. and Al-Ghuilani, N. (2004), "Durability and environmental degradation of glass-vinylester composites", Polym. Compos., 25(6), 609-616. https://doi.org/10.1002/pc.20055
  10. Huang, Z., Zhan, W. and Qian, X. (2020), "Challenges for lightweight composites in the offshore and marine industry from the fatigue perspective", Compos. Mater. Eng., 2(2), 65. https://doi.org/10.12989/cme.2020.2.2.065
  11. Hussein, A., Sarkar, S., Lee, K. and Kim, B. (2017), "Cryogenic fracture behavior of epoxy reinforced by a novel graphene oxide/poly (p-phenylenediamine) hybrid", Compos. Part B Eng., 129, 133-142. https://doi.org/10.1016/j.compositesb.2017.07.085
  12. Jang, B.Z. and Zhamu, A. (2008), "Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review", J. Mater. Sci., 43(15), 5092-5101. https://doi.org/10.1007/s10853-008-2755-2
  13. Javani, R., Bidgoli, M.R. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., 31(4), 419-426. https://doi.org/10.12989/scs.2019.31.4.419
  14. Johnson, D.W., Dobson, B.P. and Coleman, K.S. (2015), "A manufacturing perspective on graphene dispersions", Curr. Op. Colloid Interf. Sci., 20(5-6), 367-382. https://doi.org/10.1016/j.cocis.2015.11.004
  15. Khayat, M., Baghlani, A., Dehghan, S. M. and Najafgholipour, M. A. (2021), "The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells", Steel Compos. Struct., 38(1), 47-66. https://doi.org/10.12989/scs.2021.38.1.047
  16. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595
  17. Mirzaasadi, M., Zarei, V., Elveny, M., Alizadeh, S.M., Alizadeh, V. and Khan, A. (2021), "Improving the rheological properties and thermal stability of water-based drilling fluid using biogenic silica nanoparticles", Energy Reports, 7, 6162-6171. https://doi.org/10.1016/j.egyr.2021.08.130
  18. Park, H.K., Lee, S., Kim, Y.J., Jang, C. and Won, J. (2007), "Mechanical properties and microstructures of GFRP rebar after long-term exposure to chemical environments", Polym. Polym. Compos., 15(5), 403-408. https://doi.org/10.1177/096739110701500508
  19. Pokropivny, V.V. and Skorokhod, V.V. (2007), "Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science", Mater. Sci. Eng. C, 27(5-8), 990-993. https://doi.org/10.1016/j.msec.2006.09.023
  20. Shokrieh, M.M., Saeedi, A. and Chitsazzadeh, M. (2013), "Mechanical properties of multi-walled carbon nanotube/polyester nanocomposites", J. Nanostruct. Chem., 3(1), 1-5. https://doi.org/10.1186/2193-8865-3-20
  21. Signor, A.W., VanLandingham, M.R. and Chin, J.W. (2003), "Effects of ultraviolet radiation exposure on vinyl ester resins: characterization of chemical, physical and mechanical damage", Polym. Degrad. Stabil., 79(2), 359-368. https://doi.org/10.1016/S0141-3910(02)00300-2
  22. Swain, S. (2013), "Synthesis and characterization of graphene based unsaturated polyester resin composites", Transact. Electr. Electr. Mater., 14(2), 53-58. https://doi.org/10.4313/TEEM.2013.14.2.53
  23. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1. https://doi.org/10.12989/anr.2013.1.1.001
  24. Won, J.P., Lee, S.J., Jang, C.I. and Won, C. (2007), "Service life prediction of gfrp rebars in an alkaline environment", Polym. Polym. Compos., 15(6), 475-479. https://doi.org/10.1177/096739110701500607
  25. Won, J.P., Lee, S.J., Kim, Y.J., Jang, C.I. and Lee, S.W. (2008), "The effect of exposure to alkaline solution and water on the strength-porosity relationship of GFRP rebar", Compos. Part B Eng., 39(5), 764-772. https://doi.org/10.1016/j.compositesb.2007.11.002
  26. Zarei, V., Emamzadeh, A. and Nasiri, A. (2018), "Synthesis of amorphous silica nanoparticles from natural materials applied in drilling fluid for stabilizing shale layers", J. Petrol. Res., 27(96-6), 18-31.
  27. Zarei, V., Mirzaasadi, M., Davarpanah, A., Nasiri, A., Valizadeh, M. and Hosseini, M.J.S. (2021), "Environmental method for synthesizing amorphous silica oxide nanoparticles from a natural material", Processes, 9(2), 334. https://doi.org/10.3390/pr9020334
  28. Zarei, V. and Nasiri, A. (2021), "Stabilizing Asmari Formation interlayer Shales using water-based mud containing biogenic silica oxide Nanoparticles synthesized", J. Natural Gas Sci. Eng., 103928. https://doi.org/10.1016/j.jngse.2021.103928
  29. Zarei, V., Yavari, H., Nasiri, A., Mirzaasadi, M. and Davarpanah, A. (2023), "Implementation of amorphous mesoporous silica nanoparticles to formulate a novel water-based drilling fluid", Arab. J. Chem., 16, 104818. https://doi.org/10.1016/j.arabjc.2023.104818