DOI QR코드

DOI QR Code

Inhibitory Effect of Aged Petroleum Hydrocarbons on the Survival of Inoculated Microorganism in a Crude-Oil-Contaminated Site

  • Kang, Yoon-Suk (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Park, Youn-Jong (R&D Center, SK Engineering & Construction Ltd.) ;
  • Jung, Jae-Joon (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Park, Woo-Jun (Division of Environmental Science and Ecological Engineering, Korea University)
  • Published : 2009.12.31

Abstract

We studied the effects of aged total petroleum hydrocarbons (aged TPH) on the survival of allochthonous diesel-degrading Rhodococcus sp. strain YS-7 in both laboratory and field investigations. The aged TPH extracted from a crude-oil-contaminated site were fractionized by thin-layer chromatography/flame ionization detection (TLC/FID). The three fractions identified were saturated aliphatic (SA), aromatic hydrocarbon (AH), and asphaltene-resin (AR). The ratio and composition of the separated fractions in the aged TPH were quite different from the crude-oil fractions. In the aged TPH, the SA and AH fractions were reduced and the AR fraction was dramatically increased compared with crude oil. The SA and AH fractions (2 mg/l each) of the aged TPH inhibited the growth of strain YS-7. Unexpectedly, the AR fraction had no effect on the survival of strain YS-7. However, crude oil (1,000 mg/l) did not inhibit the growth of strain YS-7. When strain YS-7 was inoculated into an aged crude-oil-contaminated field and its presence was monitored by fluorescent in situ hybridization (FISH), we discovered that it had disappeared on 36 days after the inoculation. For the first time, this study has demonstrated that the SA and AH fractions in aged TPH are more toxic to an allochthonous diesel-degrading strain than the AR fraction.

Keywords

References

  1. Aislabie, J., D. J. Saul, and J. M. Foght. 2006. Bioremediation of hydrocarbon-contaminated polar soils. Extremophiles 10: 171-179 https://doi.org/10.1007/s00792-005-0498-4
  2. Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169
  3. Barranco, Jr. F. T. and H. E. Dawson. 1999. Influence of aqueous pH on the interfacial properties of coal tar. Environ. Sci. Technol. 33: 1598-1603 https://doi.org/10.1021/es980196r
  4. Bordenave, S., M. S. Goni-Urriza, P. Caumette, and R. Duran. 2007. Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl. Environ. Microbiol. 73: 6089-6097 https://doi.org/10.1128/AEM.01352-07
  5. Chen, A. C., K. Ueda, Y. Sekiguchi, A. Ohashi, and H. Harada. 2003. Molecular detection and direct enumeration of methanogenic archaea and methanotrophic bacteria in domestic solid waste landfill soils. Biotechnol. Lett. 25: 1563-1569 https://doi.org/10.1023/A:1025461915495
  6. Daims, H., A. Bruhl, R. Amann, K.-H. Schleifer, and M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22: 434-444 https://doi.org/10.1016/S0723-2020(99)80053-8
  7. DeLong, E. F., G. S. Wickham, and N. R. Pace. 1989. Phylogenetic stains: Ribosomal RNA-based probes for the identification of single microbial cells. Science 243: 1360-1363 https://doi.org/10.1126/science.2466341
  8. Duarte, G. F., A. S. Rosado, L. Seldin, W. De Araujo, and J. D. Van Elasas. 2001. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl. Environ. Microbiol. 67: 1052-1062 https://doi.org/10.1128/AEM.67.3.1052-1062.2001
  9. Eller, G., S. Stubner, and P. Frenzel. 2001. Group-specific 16S rRNA targeted probes for the detection of type I and type II methanotrophs by fluorescent in situ hybridization. FEMS Microbiol. Lett. 198: 91-97 https://doi.org/10.1111/j.1574-6968.2001.tb10624.x
  10. Floodgate, G. 1984. The fate of petroleum in marine ecosystems, pp. 355-398. In R. M. Atlas (ed.). Petroleum Microbiology. Macmillan, New York
  11. Head, I. M., D. M. Johns, and W. F. Rolling. 2006. Marine microorganisms make a meal of oil. Nat. Rev. Microbiol. 4: 173-182 https://doi.org/10.1038/nrmicro1348
  12. Hugenholtz, P., G. W. Tyson, and L. L. Blackall. 2002. Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. Methods Mol. Biol. 179: 29-42
  13. Iwabuchi, N., M. Sunairi, H. Anzai, M. Nakajima, and S. Harayama. 2000. Relationships between colony morphotypes and oil tolerance in Rhodococcus rhodochrous. Appl. Environ. Microbiol. 66: 5073-5077 https://doi.org/10.1128/AEM.66.11.5073-5077.2000
  14. Juck, D., T. Charles, L. G. Whyte, and C. W. Greer. 2000. Polyphasic microbial community analysis of petroleum hydrocarboncontaminated soils from two northern Canadian communities. FEMS Microbiol. Ecol. 33: 241-249 https://doi.org/10.1111/j.1574-6941.2000.tb00746.x
  15. Kasai, Y., H. Kishira, K. Syutsubo, and S. Harayama. 2001. Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ. Microbiol. 3: 246-255 https://doi.org/10.1046/j.1462-2920.2001.00185.x
  16. Leahy, J. G. and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305-315
  17. MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574
  18. Martienssen, M. 2001. Research report of the Saxony State Ministry for Environment and Geology, FA No. 13-8802.3523/101, Dresden, Germany
  19. Oda, Y., S.-J. Slagman, W. G. Meijer, L. J. Forney, and J. C. Gottschal. 2000. Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris. FEMS Microbiol. Ecol. 32: 205-213 https://doi.org/10.1111/j.1574-6941.2000.tb00713.x
  20. Roling, W. F. M., M. G. Milner, D. M. Jones, K. Lee, F. Daniel, R. P. J. Swannell, and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrientenhanced oil spill bioremediation. Appl. Environ. Microbiol. 68: 5537-5548 https://doi.org/10.1128/AEM.68.11.5537-5548.2002
  21. Roling, W. F. M., M. G. Milner, D. M. Jones, F. Fratepietro, R. P. J. Swannell, F. Daniel, and I. M. Head. 2004. Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl. Environ. Microbiol. 70: 2603-2613 https://doi.org/10.1128/AEM.70.5.2603-2613.2004
  22. Shelton, M. E., P. J. Chapman, S. S. Foss, and W. S. Fisher. 1999. Degradation of weathered oil by mixed marine bacteria and the toxicity of accumulated water-soluble material to two marine Crustacea. Arch. Environ. Contam. Toxicol. 36: 13-20 https://doi.org/10.1007/s002449900437
  23. Stanier, R. Y., N. J. Palleroni, and M. Dudorhoff. 1966. The aerobic pseudomonads: A taxonomic study. J. Gen. Microbiol. 43: 159-271 https://doi.org/10.1099/00221287-43-2-159
  24. Torres, L. G., N. Rojas, G. Bautista, and R. Iturbe. 2005. Effect of temperature, and surfactant's HLB and dose over the TPH diesel biodegradation process in aged soils. Process Biochem. 40: 3296-3302 https://doi.org/10.1016/j.procbio.2005.03.032
  25. Van Hamme, J. D. and O. P. Ward. 2001. Physical and metabolic interactions of Pseudomonas sp. strain JA5-B45 and Rhodococcus sp. strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Appl. Environ. Microbiol. 67: 4874-4879 https://doi.org/10.1128/AEM.67.10.4874-4879.2001
  26. Van Hamme, J. D., A. Singh, and O. P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67: 503-549 https://doi.org/10.1128/MMBR.67.4.503-549.2003
  27. Whyte, L. G., B. Goalen, J. Hawari, D. Labbe, C. W. Greer, and M. Nahir. 2001. Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Reg. Sci. Technol. 32: 121-132 https://doi.org/10.1016/S0165-232X(00)00025-2
  28. Yuhong, L., G. Ansong, and H. Haiping. 2009. The influence of biodegradation on resins and asphaltenes in the Liaohe Basin. Org. Geochem. 40: 312-320 https://doi.org/10.1016/j.orggeochem.2008.12.006
  29. Zucchi, M., L. Angiolini, S. Borin, L. Brusetti, N. Dietrich, C. Gigliotti, P. Barbieri, C. Sorlini, and D. Daffonchio. 2003. Response of bacterial community during bioremediation of an oil-polluted soil. J. Appl. Microbiol. 94: 248-257 https://doi.org/10.1046/j.1365-2672.2003.01826.x

Cited by

  1. Comparative Bioremediation of Crude Oil-Amended Tropical Soil Microcosms by Natural Attenuation, Bioaugmentation, or Bioenrichment vol.2011, pp.None, 2009, https://doi.org/10.1155/2011/156320
  2. Novel diesel-oil-degrading bacteria and fungi from the Ecuadorian Amazon rainforest vol.71, pp.10, 2009, https://doi.org/10.2166/wst.2015.142
  3. Efficiency of Indigenous Filamentous Fungi for Biodegradation of Petroleum Hydrocarbons in Medium and Soil: Laboratory Study from Ecuador vol.95, pp.3, 2009, https://doi.org/10.1007/s00128-015-1605-6
  4. Preliminary Study towards Enhanced Crude Oil Biodegradation Reveals Congeneric Total Peroxidases with Striking Distinctions vol.3, pp.3, 2015, https://doi.org/10.4236/aer.2015.33007
  5. Biodegradation of Diesel, Crude Oil and Spent Lubricating Oil by Soil Isolates of Bacillus spp. vol.98, pp.5, 2009, https://doi.org/10.1007/s00128-017-2039-0
  6. Biodegradation of Diesel, Crude Oil and Spent Lubricating Oil by Soil Isolates of Bacillus spp. vol.98, pp.5, 2009, https://doi.org/10.1007/s00128-017-2039-0
  7. Adaptation behaviour of bacterial species and impact on the biodegradation of biodiesel-diesel vol.34, pp.2, 2009, https://doi.org/10.1590/0104-6632.20170342s20150491
  8. Isolation and identification of new strains of crude oil degrading bacteria from Kharg Island, Iran vol.36, pp.12, 2009, https://doi.org/10.1080/10916466.2018.1447961
  9. Ecological response of nitrification to oil spills and its impact on the nitrogen cycle vol.21, pp.1, 2019, https://doi.org/10.1111/1462-2920.14391
  10. A review of bioreremediation of hydrocarbon contaminated soils in Niger Delta area of Nigeria vol.46, pp.3, 2021, https://doi.org/10.5937/poljteh2103023p