DOI QR코드

DOI QR Code

Enrichment of Hydrogenotrophic Methanogens in Coupling with Methane Production Using Electrochemical Bioreactor

  • Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University) ;
  • Kim, Sung-Yong (Department of Biological Engineering, Seokyeong University) ;
  • Park, Yong-Keun (College of Life Science and Biotechnology, Korea University) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2009.12.31

Abstract

Anaerobic digestion sludge was cultivated in an electrochemical bioreactor (ECB) to enrich the hydrogenotrophic methanogens. A modified graphite felt cathode with neutral red (NR-cathode) was charged with electrochemical reducing power generated from a solar cell. The methane and carbon dioxide collected in a Teflon bag from the ECB were more than 80 ml/l of reactant/day and less than 20 ml/l of reactant/day, respectively, whereas the methane and carbon dioxide collected from a conventional bioreactor (CB) was around 40 ml/l of reactant/day, respectively. Moreover, the maximal volume ratios of methane to carbon dioxide (M/C ratio) collected in the Teflon bag from the ECB and CB were 7 and 1, respectively. The most predominant methanogens isolated from the CB on the $20^{th}$, $80^{th}$, and $150^{th}$ days of incubation were hydrogenotrophs. The methanogenic diversity analyzed by temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region was higher in the ECB than in the CB. The DNA extracted from the TGGE bands was more than 95% homologous with hydrogenotrophic methanogens in the ECB, but was an aceticlastic methanogen in the CB. In conclusion, the ECB was demonstrated as a useful system for enriching hydrogenotrophic methanogens and increasing the M/C ratio of the gas product.

Keywords

References

  1. Angenent, L. T., S. Sung, and L. Raskin. 2002. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res. 36: 4648-4654 https://doi.org/10.1016/S0043-1354(02)00199-9
  2. Balch, W. E. and R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-Mercaptoethanesulfonic acid (HSCoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781-791
  3. Barredo, M. S. and L. M. Evison. 1991. Effect of propionate toxicity on methanogen-enriched sludge Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl. Environ. Microbiol. 57: 1764-1769
  4. Calli, B., B. Mertoglu, B. Inanc, and O. Yenigun. 2005. Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia. Environ. Technol. 26: 85-91 https://doi.org/10.1080/09593332608618585
  5. Dhillon, A., M. Lever, K. G. Lloyd, D. B. Albert, M. L. Sogin, and A. Teske. 2005. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Suaymas Basin. Appl. Environ. Microbiol. 71: 4592-4601 https://doi.org/10.1128/AEM.71.8.4592-4601.2005
  6. Ferguson, T. J. and R. A. Mah. 1983. Isolation and characterization of an $H_2$-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45: 265-274
  7. Ferry, J. G. 1992. Methane from acetate. J. Bacteriol. 174: 5489-5495
  8. Ferry, J. G. 1993. Methanogenesis Ecology, Physiology, Biochemistry and Genetics. Chapman & Hall, New York
  9. Gottschalk, G. 1985. Bacterial Metabolism, Second Edition, pp 252-260. Springer-Verlag, New York
  10. Harris, J. E., P. A. Pinn, and R. P. Davis. 1984. Isolation and characterization of a novel thermophilic, freshwater methanogen. Appl. Environ. Microbiol. 48: 1123-1128
  11. Hendrickson, E. L., R. Kaul, Y. Zhou, D. Bovee, P. Chapman, J. Chung, et al. 2004. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J. Bacteriol. 186: 6956-6968 https://doi.org/10.1128/JB.186.20.6956-6969.2004
  12. Hori, T., S. Haruta, Y. Ueno, M. Ishii, and Y. Igarashi. 2006. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl. Environ. Microbiol. 72: 1623-1630 https://doi.org/10.1128/AEM.72.2.1623-1630.2006
  13. Hulshoff Pol, L. W., W. J. de Zeenw, C. T. M. Velzeboer, and G. Lettinga. 1983. Granulation in UASB-reactors. Water Sci. Technol. 15: 219-304
  14. Huser, B. A., K. Wuhrmann, and A. J. Zehnder. 1982. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132: 1-9 https://doi.org/10.1007/BF00690808
  15. Hutchins, S. R., M. B. Tomson, J. T. Wilson, and C. H. Ward. 1987. Anaerobic inhibition of trace organic compound removal during rapid infiltration of wastewater. Appl. Environ. Microbiol. 48: 1046-1048
  16. Imachi, H., S. Sakai, Y. Sekiguchi, S. Hanada, Y. Kamagata, A. Ohashi, and H. Harada. 2008. Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int. J. Syst. Evol .Microbiol. 58: 294-301 https://doi.org/10.1099/ijs.0.65394-0
  17. Jetten, M. S. M., A. J. M. Stams, and A. J. Zehnder. 1989. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehungenii. J. Bacteriol. 171: 5430-5435
  18. Jones, W. J., M. J. B. Paynter, and R. Gupta. 1983. Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch. Microbiol. 135: 91-97 https://doi.org/10.1007/BF00408015
  19. Kaspar, H. F. and K. Wuhrmann. 1978. Product inhibition in sludge digestion. Microb. Ecol. 4: 241-248 https://doi.org/10.1007/BF02015080
  20. Keyser, M., R. C. Witthauhn, C. Lampecht, M. P. A. Coetzee, and T. J. Britz. 2006. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. System. Appl. Microbiol. 29: 77-84 https://doi.org/10.1016/j.syapm.2005.06.003
  21. Klene, R. P., S. Oremland, A. Catena, A. Pol. H. H. M. Op den Camp, and C. van der Drift. 1997. Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl. Environ. Microbiol. 63: 4741-4747
  22. Lomans, B. P., R. Maas, R. Luderer, H. J. M. Op den Camp, A. Pol, C. van der Drift, and G. D. Vogels. 1999. Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methyltrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl. Environ. Microbiol. 65: 3641-3650
  23. Lovley, D. R. and J. J Klug. 1982. Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl. Environ. Microbiol. 43: 552-560
  24. Mackie, R. I. and M. P. Bryant. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and $CO_2$ to methanogenesis in cattle waste at $40{^{\circ}C}$ and $60{^{\circ}C}$. Appl. Environ. Microbiol. 41: 1363-1373
  25. Mountfort, D. O. and R. A. Asher. 1978. Changes in proportions of acetate and carbon dioxide used as methane precursor during the anaerobic digestion of bovine waste. Appl. Environ. Microbiol. 35: 648-645
  26. Na, B. K., T. K. Hwang, S. H. Lee, D. H. Ju, B. I. Sang, and D. H. Park. 2007. Development of bioreactors for enrichment of chemolithotrophic methanogen and methane production. Kor. J. Microbiol. Biotechnol. 35: 52-57
  27. Oremland, R. S., R. P. Kiene, I. Mathrani, M. J. Whitica, and D. R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl. Environ. Microbiol. 55: 994-1002
  28. Ovreas, L., L. Forney, F. L. Daae, and V. Torsvik. 1977. Distribution of bacterioplankton in meromictic Lake Saelenannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S-rRNA. Appl. Environ. Microbiol. 63: 3367-3373
  29. Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410
  30. Smith, P. H. and R. A. Mah. 1966. Kinetics of acetate metabolism during sludge digestion. Appl. Environ. Microbiol. 14: 368-371
  31. Sprott, G. D., I. Ekiel, and G. B. Patel. 1993. Metabolic pathways in Methanococcus jannashii and other methanogenic bacteria. Appl. Environ. Microbiol. 59: 1092-1098
  32. Tersteegen, A. and R. Hedderich. 1999. Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur. J. Biochem. 264: 930-943 https://doi.org/10.1046/j.1432-1327.1999.00692.x
  33. Westermann, P., B. K. Ahring, and R. A. Mah. 1989. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55: 514-515
  34. Zeikus, J. G. and R. S. Wolfe. 1972. Methanobacterium thermoautotrophicum sp. nov.: An anaerobic autotrophic, extreme thermophile. J. Bacteriol. 109: 707-713
  35. Zinder, S. H., S. C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic ($58{^{\circ}C}$) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47: 796-807
  36. Zinder, S. H. 1993. Physiological ecology of methanogens, pp. 128-206. In J. G. Ferry (ed.). Methanogenesis. Chapman & Hall, London, U.K

Cited by

  1. Enrichment of $CO_2$-Fixing Bacteria in Cylinder-Type Electrochemical Bioreactor with Built-In Anode Compartment vol.21, pp.6, 2009, https://doi.org/10.4014/jmb.1101.01032
  2. Biological conversion of CO2 to CH4 using hydrogenotrophic methanogen in a fixed bed reactor vol.87, pp.6, 2009, https://doi.org/10.1002/jctb.3787
  3. Bioelectrochemical regulation accelerates facultatively syntrophic proteolysis vol.114, pp.1, 2009, https://doi.org/10.1016/j.jbiosc.2012.02.013
  4. Increased Growth of a Hydrogenotrophic Methanogen in Co-Culture with a Cellulolytic Bacterium under Cathodic Electrochemical Regulation vol.77, pp.5, 2013, https://doi.org/10.1271/bbb.120896
  5. 혐기성 고정층 생물반응기의 연속운전을 통한 이산화탄소의 메탄전환 vol.22, pp.4, 2009, https://doi.org/10.5855/energy.2013.22.4.347
  6. High-rate hydrogenotrophic methanogenesis for biogas upgrading: the role of anaerobic granules vol.36, pp.4, 2009, https://doi.org/10.1080/09593330.2014.979886
  7. Effect of slurry dilution, structural carbohydrates, and exogenous archaea supply on in vitro anaerobe fermentation and methanogens population of swine slurry vol.34, pp.1, 2009, https://doi.org/10.1002/ep.11952
  8. Bioconversion of carbon dioxide in anaerobic digesters for on-site carbon capture and biogas enhancement - A review vol.47, pp.17, 2009, https://doi.org/10.1080/10643389.2017.1372001