Advanced 'green' composites

  • Netravali, Anil N. (Fiber Science Program, Dept. of Fiber Science and Apparel Design, Cornell University) ;
  • Huang, Xiaosong (Fiber Science Program, Dept. of Fiber Science and Apparel Design, Cornell University) ;
  • Mizuta, Kazuhiro (Fiber Science Program, Dept. of Fiber Science and Apparel Design, Cornell University)
  • Published : 2007.12.01

Abstract

Fully biodegradable high strength composites or 'advanced green composites' were fabricated using yearly renewable soy protein based resins and high strength liquid crystalline cellulose fibers. For comparison, E-glass and aramid ($Kevlar^{(R)}$) fiber reinforced composites were also prepared using the same modified soy protein resins. The modification of soy protein included forming an interpenetrating network-like (IPN-like) resin with mechanical properties comparable to commonly used epoxy resins. The IPN-like soy protein based resin was further reinforced using nano-clay and microfibrillated cellulose. Fiber/resin interfacial shear strength was characterized using microbond method. Tensile and flexural properties of the composites were characterized as per ASTM standards. A comparison of the tensile and flexural properties of the high strength composites made using the three fibers is presented. The results suggest that these green composites have excellent mechanical properties and can be considered for use in primary structural applications. Although significant additional research is needed in this area, it is clear that advanced green composites will some day replace today's advanced composites made using petroleum based fibers and resins. At the end of their life, the fully sustainable 'advanced green composites' can be easily disposed of or composted without harming the environment, in fact, helping it.

References

  1. E. S. Stevens, Green Plastics. Princeton University Press, Princeton, USA (2002).
  2. A. N. Netravali and S. Chabba, Composites get greener, Materials Today 6, 22-29 (2003).
  3. S. Chabba and A. N. Netravali, 'Green' composites using modified soy protein concentrate resin and flax fabrics and yarns, Japan Soc. Mech. Engng. (JSME) Int. J. 47, 556-560 (2004).
  4. P. Lodha and A. N. Netravali, Characterization of stearic acid modified soy protein isolate resin and ramie fiber reinforced 'green' composites, Compos. Sci. Technol. 65, 647-659 (2005). https://doi.org/10.1016/j.compscitech.2004.09.023
  5. S. Chabba, Characterization of environment friendly 'green' composites with modified soy protein concentrate and flax yarn and fabric, MS Thesis, Cornell University, USA (2003).
  6. P. Lodha, Fundamental approaches to improving performance of soy protein isolate based 'green' plastics and composites, PhD Thesis, Cornell University, USA (2004).
  7. A. K. Mohanty, M. Misra and G. Hinrichsen, Biofibers, biodegradable polymers and biocomposites: an overview, Macromol. Mater. Engng. 276, 1-24 (2000). https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  8. A. Gomes, K. Goda and J. Ohgi, Effects of alkali treatment to reinforcement on tensile properties of curaua fiber green composites, JSME Int. J. 47, 541-546 (2004). https://doi.org/10.1299/jsmea.47.541
  9. S. Ochi, H. Takagi and H. Tanaka, Mechanical properties of cross-ply 'green' composites reinforced by malina hemp fibers, in: Proc. Int. Workshop 'Green' Compos., Tokushima, Japan, November 19-20 (2002).
  10. A. N. Netravali, Biodegradable 'green' composites using ramie fibers and soy protein polymer, in: Natural Fibers, Plastics and Composites, F. T. Wallenberger and N. E. Weston (Eds), pp. 321-343. Kluwer Academic Publishers, Boston, USA (2004).
  11. S. C. Chabba, G. T. Matthews and A. N. Netravali, 'Green' composites using modified soy flour and flax yarns, Green Chemistry 7, 576-581 (2004). https://doi.org/10.1039/b410817e
  12. S. Nam, Environment-friendly 'green' biodegradable composites using ramie fibers and soy protein concentrate (SPC) polymer, MS Thesis, Cornell University, USA (2002).
  13. T. Fujii, K. Okubo and N. Yamashita, Development of high performance bamboo composites using micro fibrillated cellulose, in: Proc. 2nd Intern. Conf. High Performance Structural Materials. Ancona, Italy, May 31-June 2 (2004).
  14. A. N. Netravali, Green composites: current trends and developments, in: Proc. MACRO-04, Thiruvananthapuram, India, December 14-17 (2004).
  15. A. N. Netravali, Towards advanced 'green' composites, in: Proc. Int. Workshop 'Green' Compos. -3, Kyoto, Japan, March 16-17 (2005).
  16. W. Helbert, J. Y. Cavaille and A. Dufresne, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. 1. Processing and mechanical behavior, Polym. Compos. 17, 604-611 (1996). https://doi.org/10.1002/pc.10650
  17. T. Nishino, K. Takano and K. Nakamae, Elastic-modulus of the crystalline regions of cellulose polymorphs, J. Polym. Sci. Part B-Polym. Phys. 33, 1647-1651 (1995). https://doi.org/10.1002/polb.1995.090331110
  18. A. N. Nakagaito and H. Yano, Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure, Appl. Phys. A 80, 155-159 (2003).
  19. A. N. Nakagaito, S. Iwamoto and H. Yano, Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites, Appl. Phys. A 80, 93-97 (2004).
  20. J. Turner and C. Karatzas, in: Natural Fibers, Plastics and Composites, F. T. Wallenberger and N. Weston (Eds). Kluwer Academic Publishers, Boston, USA (2004).
  21. D. T. Grubb and L. Jelinski, Fiber morphology of spider silk: the effects of tensile deformation, Macromolecules 30, 2860-2867 (1997). https://doi.org/10.1021/ma961293c
  22. H. Borstoel, Liquid crystalline solutions of celulose in phosphoric acid, PhD Thesis, Rijksuniversiteit, Groningen, The Netherlands (1998).
  23. S. Salmon and S. M. Hudson, Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan, J. Macromol. Sci. Rev. 37, 199-276 (1997).
  24. X. Huang and A. N. Netravali, Characterization of nano-clay reinforced phytagel-modified soy protein concentrate resin, Biomacromolecules 7, 2783-2789 (2006). https://doi.org/10.1021/bm060604g
  25. P. Lodha and A. N. Netravali, Characterization of Phytagel modified soy protein isolate resin and unidirectional flax yarn reinforced 'green' composites, Polym. Compos. 26, 647-659 (2005). https://doi.org/10.1002/pc.20128
  26. G. O. Shonaike and G. P. Simon (Eds), Polymer Blends and Alloys. Marcel Dekker, Inc, New York, USA (1999).
  27. D. Klempner, L. H. Sperling and L. A. Utracki, Interpenetrating Polymer Network. American Chemical Society, Washington DC, USA (1994).
  28. A. C. Finnefrock, R. Ulrich, G. E. S. Toombes, S. M. Gruner and U. Wiesner, The plumber's nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates, J. Amer. Chem. Soc. 125, 13084-13093 (2003). https://doi.org/10.1021/ja0355170
  29. D. Shah, Polymer nanocomposites: structure and dynamics at the interface and their effect on nanohybrid properties, PhD Thesis, Cornell University, USA (2004).
  30. P. Lodha and A. N. Netravali, Characterization of interfacial and mechanical properties of 'green' composites with soy protein isolate and ramie fiber, J. Mater. Sci. 37, 3657-3665 (2002). https://doi.org/10.1023/A:1016557124372
  31. S. Luo and A. N. Netravali, Interfacial and mechanical properties of environment-friendly 'green' composites made from pineapple fibers and poly(hydroxybutyrate-co-valerate) resin, J. Mater. Sci. 34, 3709-3719 (1999). https://doi.org/10.1023/A:1004659507231
  32. B. Miller, P. Muri and L. Rebenfeld, A microbond method for determination of the shear-strength of a fiber-resin interface, Compos. Sci. Technol. 28, 17-32 (1987). https://doi.org/10.1016/0266-3538(87)90059-5