• Title/Summary/Keyword: cellulose fibers

Search Result 281, Processing Time 0.027 seconds

Cellulose-based carbon fibers prepared using electron-beam stabilization

  • Kim, Min Il;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.18
    • /
    • pp.56-61
    • /
    • 2016
  • Cellulose fibers were stabilized by treatment with an electron-beam (E-beam). The properties of the stabilized fibers were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The E-beam-stabilized cellulose fibers were carbonized in N2 gas at 800℃ for 1 h, and their carbonization yields were measured. The structure of the cellulose fibers was determined to have changed to hemicellulose and cross-linked cellulose as a result of the E-beam stabilization. The hemicellulose decreased the initial decomposition temperature, and the cross-linked bonds increased the carbonization yield of the cellulose fibers. Increasing the absorbed E-beam dose to 1500 kGy increased the carbonization yield of the cellulose-based carbon fiber by 27.5% upon exposure compared to untreated cellulose fibers.

Effect of PFI mill and Valley beater refining on cellulose degree of polymerization, alpha cellulose contents, and crystallinity of wood and cotton fibers

  • Hai, Le Van;Park, Hee Jung;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.27-33
    • /
    • 2013
  • Manufacturing fabrics from dissolving cellulosic pulp is increasing in these days. For making high quality of cellulose-based fabrics, control of cellulose DP (degree of polymerization), its alpha cellulose content, its brightness, and its crystallinity are important. To process the cellulosic raw material, refining of cellulosic fibers is essential, and it is important to know if refining affects those important cellulose properties. The effects of PFI mill and Valley beater refining on the alpha-cellulose content, cellulose DP, crystallinity, and paper mechanical properties of wood and two different cotton fibers were studied. The results showed that PFI mill refining rarely affected those properties. Fibers refined by a Valley beater displayed a small reduction in fiber length in comparison with those refined by a PFI mill. However, the Valley beater refining method produced almost no changes in cellulose properties, either. The refining process seemed to have very little effect on the cellulose DP, crystallinity index, or alpha-cellulose content until the freeness decreased to around 300 mL CSF for wood and 100 mL CSF for cotton fibers, respectively. There were also no differences in tensile strength development in two refining methods.

Reaarding Effect of Dietary Fibers Isolated from Tangerine Peels on Glucose, Bile Acid, Cadmium transport In Vitro (감귤과피로부터 분리한 식이섬유의 포도당, 담즙산, 카드뮴 투과억제에 관한 In Vitro 연구)

  • 김미경
    • Journal of Nutrition and Health
    • /
    • v.30 no.2
    • /
    • pp.210-219
    • /
    • 1997
  • Retarding effects of the dietary fibers from tangerine peels on glucose, bile acid and cadmium transport were evaluated by dialysis method, and were compared with those of commercial dietary fibers(citrus pection, CM-cellulose, guar gum, $\alpha$-cellulose). Yields of total (TDF), insoluble(IDF) and soluble dietary fibers(SDF) from tangerine peels on the fresh matter basis were 2.84%, 1.95% and 0.39% respectively. The amount of insoluble fibers was 5.2 times higher than that of soluble fibers. Soluble fibers(guar gum, CM-cellulose, SDF, pectin) had the retarding effect on glucose transport, while IDF, TDF and $\alpha$-cellulose did not have. Guar gum showed the greatest effect, followed by CM-cellulose, SDF and pectin. Among the extracted fibers, only SDF had the effect on glucose transport retardation. Regarding bile acid dialysis, guar gum had the greatest retarding effect, and all dietary fibers from tangerine peels, especially SDF, showed the effect of bile acid retardation. On cadmium transport retardation, CM-cellulose had the greatest effect, followed by SDF, TDF, IDF, guar gum and pectin. Among the extracted fibers, SDF had the greatest effect on Cd trasport transport retardation. The extracted dietary fibers showed higher retarding effect on Cd transport than glucose and bile acid transport, and the effect of SDF was higher than IDF.

  • PDF

Improved flame retardant performance of cellulose fibers following fluorine gas treatment

  • Kim, Jong Gu;Lee, Young-Seak;In, Se Jin
    • Carbon letters
    • /
    • v.28
    • /
    • pp.66-71
    • /
    • 2018
  • To improve the flame retardant performance of cellulose fibers, fluorine functional groups were introduced under various controlled fluorination conditions. The properties of the fluorinated cellulose fibers were analyzed by X-ray photoelectron spectroscopy and a thermogravimetric analysis. The fluorine functional group content in the fluorinated cellulose fibers increased with an increase in the fluorination temperature. However, the fluorination reaction increased the char yield and decreased the rate of degradation of the cellulose fibers by introducing donors, enabling the formation of a thick and compact char layer. Therefore, the flame retardant properties of cellulose fibers were improved following the fluorination treatment.

A Study on the Preparation and Properties of Cellulose-EVOH Fibers (Cellulose-EVOH 섬유의 제조와 물성에 관한 연구)

  • 문병화;임상규;손태원;김삼수
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.19-23
    • /
    • 1998
  • In this study, Cellulose-Poly(Ethylene-Co-Vinyl Alcohol) (EVOH) fibers from MMNO(N-me-thylmorpholine-N-oxide) /water/cellulose/EVOH were prepared according to changes of EVOH content(wt%), which is main factors to dry-jet wet spinning. The mechanical properties and morphology of produced fibers were investigated. The resultant fibers had tensile strength of 3.7∼4.5g/d, elongation of 3.3∼7.5% and exhibited lower density than the density of pure cellulose fiber.

  • PDF

A Study on the Hydrophobicity Modification and Physical Properties of Tencel Regenerated Fibers for Polypropylene Resin Composites (폴리프로필렌 수지 복합을 위한 텐셀 재생섬유의 소수화 표면개질 특성 연구)

  • Yoon, Songhyun;Kim, Mikyung;Lee, Eunsoo
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.258-268
    • /
    • 2021
  • This study conducted on the introduction of recycled cellulose fibers, which are widely used in the textile industry as eco-friendly biomass materials, into polypropylene resins, which are mainly used for interior and exterior materials such as door trims and console parts of automobiles. In general, cellulose fibers can affect mechanical properties and have a lightening effect when used as a reinforcing agent. However, since cellulose fibers have hydrophilic properties and have relatively low compatibility with industrial polymer resins, they are used in combination through fiber hydrophobic surface treatment. Therefore, through this study, the reforming reaction conditions optimized in terms of hydrophobicity and workability for cellulose fibers are studied. Furthermore, polypropylene containing surface-modified cellulose fibers was prepared to compare physical properties by fiber content and study optimized content.

Manufacturing and characteristics of PAN-based composite carbon fibers containing cellulose particles

  • Yang, Jee-Woo;Jin, Da Young;Lee, Ji Eun;Lee, Seung Goo;Park, Won Ho
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.203-210
    • /
    • 2015
  • This study fabricated low thermal conductive polyacrylonitrile (PAN)-based carbon fibers containing cellulose particles while maintaining their mechanical properties. The high thermal conductivity of carbon fibers limits their application as a high temperature insulator in various systems such as an insulator for propulsion parts in aerospace or missile systems. By controlling process parameters such as the heat treatment temperature of the cellulose particles and the amount of cellulose added, the thermal and mechanical properties of the PAN-based carbon fibers were investigated. The results show that it is possible to manufacture composite carbon fibers with low thermal conductivity. That is, thermal conductivities were reduced by the cellulose particles in the PAN based carbon fibers while at the same time, the tensile strength loss was minimized, and the tensile modulus increased.

Properties of Specialty Cellulose Fiber Reinforced Concrete at Early Ages (특수 가공된 셀룰로오스섬유보강 콘크리트의 초기 특성)

  • 원종필;박찬기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.349-354
    • /
    • 1999
  • Specialty cellulose fibers processed for the reinforcement of concrete offer relatively high levels of elastic modulus and bond strength. The hydrophilic surfaces of specialty cellulose fibers facilitate their dispersion and bonding in concrete. Specialty cellulose fibers have small effective diameters which are comparable to the cement particle size, and thus promote close packing and development of dense bulk and interface microstructure in the matrix. The relatively high surface area and the close spacing of specialty cellulose fibers when combined with their desirable mechanical characteristic make them quite effective in the suppression and stabilization of microcracks in the concrete matrix. The properties of fresh mixed specialty cellulose fiber reinforced concrete and the contribution of specialty cellulose fiber to the restrained shrinkage crack reduction potential of cement composites at early age and theirs evaluation are presented in this paper. Results indicated that specialty cellulose fiber reinforcement showed an ability to reduce the total area significantly (as compared to plain concrete and polypropylene fiber reinforced concrete.

  • PDF

Degardatrion of Cellulosic Fibers by Electron Beam Irradiation

  • Han, Sung-Ok;Seo, Yung-Bum;Lee, Chun-Han
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.39 no.5
    • /
    • pp.20-25
    • /
    • 2007
  • Henequen fibers were treated by electron beam irradiation and by NaOH to make surface modification for better bonding in the manufacture of biocomposite. Impurity removal and carbonyl group formation were noticed in the previous study by electron beam irradiation, but extensive cellulose degradation were also noticed. To evaluate the effects of electron beam irradiation on cellulosic fibers further, henequen fibers, cotton pulp, cotton fibers, and cellophane were irradiated by electron beam, and their changes of cellulose viscosity, chemical composition, and tensile strength were measured and analyzed.

The effect of carboxymenthyl cellulose in PP fibers for dye absorption ability

  • Panutumrong, Praripatsaya;Metanawin, Tanapak;Metanawin, Siripan
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.52-60
    • /
    • 2015
  • The present study aims to the use of carboxymenthyl cellulose (CMC) improving the ability of fiber in the dyeing process. Cellulose was extracted from banana leaves by NaOH and then modified by reacting with chloroacetic acid to obtain the carboxymenthyl cellulose. The effect of carboxymenthyl cellulose contents on the mechanical properties and dye absorption were also investigated. Then, CMC were blend with polypropylene (grade 561R) at 1%, 3% and 5% by weight ratio. The fibers were obtained from single screw extruder. The results show that the mechanical properties of the product decreased when increased the amount of CMC in the fiber product. After dyeing, the dye however were absorbed by the CMC-PP fibers more than the original PP fibers. The absorption of dye on the CMC-PP fibers increased significantly with the CMC ratio.