• Title/Summary/Keyword: green composites

Search Result 163, Processing Time 0.02 seconds

Advanced 'green' composites

  • Netravali, Anil N.;Huang, Xiaosong;Mizuta, Kazuhiro
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.269-282
    • /
    • 2007
  • Fully biodegradable high strength composites or 'advanced green composites' were fabricated using yearly renewable soy protein based resins and high strength liquid crystalline cellulose fibers. For comparison, E-glass and aramid ($Kevlar^{(R)}$) fiber reinforced composites were also prepared using the same modified soy protein resins. The modification of soy protein included forming an interpenetrating network-like (IPN-like) resin with mechanical properties comparable to commonly used epoxy resins. The IPN-like soy protein based resin was further reinforced using nano-clay and microfibrillated cellulose. Fiber/resin interfacial shear strength was characterized using microbond method. Tensile and flexural properties of the composites were characterized as per ASTM standards. A comparison of the tensile and flexural properties of the high strength composites made using the three fibers is presented. The results suggest that these green composites have excellent mechanical properties and can be considered for use in primary structural applications. Although significant additional research is needed in this area, it is clear that advanced green composites will some day replace today's advanced composites made using petroleum based fibers and resins. At the end of their life, the fully sustainable 'advanced green composites' can be easily disposed of or composted without harming the environment, in fact, helping it.

Thermal conductivity of PLA-bamboo fiber composites

  • Takagi, Hitoshi;Kako, Shuhei;Kusano, Koji;Ousaka, Akiharu
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • 'Green' composites were fabricated from poly lactic acid (PLA) and bamboo fibers by using a conventional hot pressing method. The insulating properties of the PLA-bamboo fiber 'green' composites were evaluated by determination of the thermal conductivity, which was measured using a hot-wire method. The thermal conductivity values were compared with theoretical estimations. It was demonstrated that thermal conductivity of PLA-bamboo fiber 'green' composites is smaller than that of conventional composites, such as glass fiber reinforced plastics (GFRPs) and carbon fiber reinforced plastics (CFRPs). The thermal conductivity of PLA-bamboo fiber 'green' composites was significantly influenced by their density, and was in fair agreement with theoretical predictions based on Russell's model. The PLA-bamboo fiber composites have low thermal conductivity comparable with that of woods.

Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.372-379
    • /
    • 2006
  • The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly 'green' composites. SEM micrographs of a longitudinal and cross sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young's modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to $160^{\circ}C$ with no decrease in tensile strength or Young's modulus. However, at temperatures higher than $160^{\circ}C$ the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9 %. These properties make ramie fibers suitable as reinforcement for 'green' composites. Also, the green composites can be fabricated at temperatures up to $160^{\circ}C$ without reducing the fiber properties.

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

Green Composites. II. Environment-friendly, Biodegradable Composites Using Ramie Fibers and Soy Protein Concentrate (SPC) Resin

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.380-388
    • /
    • 2006
  • Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65% (on weight basis) ramie fibers and SPC resin. The tensile strength and Young's modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young's modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.

Synthesis of CoSe2/RGO Composites and Its Application as a Counter Electrode for Dye-Sensitized Solar Cells

  • Ko, Yohan;Choi, Wooyeol;Kim, Youbin;Lee, Chanyong;Jun, Yongseok;Kim, Junhee
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.313-320
    • /
    • 2019
  • In this study, cobalt diselenide ($CoSe_2$) and the composites ($CoSe_2@RGO$) of $CoSe_2$ and reduced graphene oxide (RGO) were synthesized by a facile hydrothermal reaction using cobalt ions and selenide source with or without graphene oxide (GO). The formation of $CoSe_2@RGO$ composites was identified by analysis with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and scanning electron microscopy (SEM). Electrochemical analyses demonstrated that the $CoSe_2@RGO$ composites have excellent catalytic activity for the reduction of $I_3{^-}$, possibly indicating a synergetic effect of $CoSe_2$ and RGO. As a consequence, the $CoSe_2@RGO$ composites were applied as a counter electrode in DSSC for the reduction of redox couple electrolyte, and exhibiting the comparable power conversion efficiency (7.01%) to the rare metal platinum (Pt) based photovoltaic device (6.77%).

Mechanical and Impact Properties and Heat Deflection Temperature of Wood Flour-reinforced Recycled Polyethylene Green Composites (목분강화 재활용폴리에틸렌 그린복합재료의 기계적 특성, 충격 특성 및 열변형온도)

  • Lee, Ki-Young;Cho, Dong-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • Considering of utilizing renewable resources and recycled plastics, green composites consisted of recycled polyethylene (PE) as matrix and eco-friendly natural fibers as reinforcement were processed and characterized in the present study. First, the wood flour/recycled polyethylene pellets with different wood flour contents were prepared by twin-screw extrusion processing. Using the pellets, wood flour/recycled polyethylene green composites were fabricated and the effects of wood flour loading on their flexural, tensile, impact properties, heat deflection temperature and fracture behavior were investigated. It was concluded that the flexural strength, flexural modulus, tensile modulus and heat deflection temperature of wood flour/recycled polyethylene green composites were increased with wood flour, whereas the tensile strength and impact strength were decreased. The fracture behavior observed by means of scanning electron microscopy supported qualitatively the tendency of the impact strength with wood flour loading, compared with the ductile fracture pattern of recycled polyethylene.

Comparative investigation on fatigue and moisture absorption behavior of hemp and Jute fibre polymer composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.729-736
    • /
    • 2022
  • Earth is facing a serious problem of pollution and scarcity of energy sources. The synthetic fibers used in automobile and Aerospace manufacturing sectors are non-renewable and harmful to environment. International Agency such as FAA and SAE is forcing for green fuel, green materials and structures. Further exploration is much needed to understand its potential in structural applications. In the current study, hemp and Jute fibre based composites were developed and tested for assessing their suitability for possible applications in automobile and aerospace sectors. Composites were undergone tensile test, water absorption test, and fatigue analysis to understand its behavior under various loading conditions. The finite element analysis has been carried out to understand the fatigue behaviour of composites. The results revealed that the usage of hemp and jute fibre reinforced composites can improve mechanical properties and have shown a viable alternative to replace synthetic fibres such as glass fibres for specific applications. Hemp reinforced bio-composites have shown better performance as compared to Jute reinforced bio-composites while water resistance characteristics for hemp is poorer to jute fibres.

Examination of heat resistant tensile properties and molding conditions of green composites composed of kenaf fibers and PLA resin

  • Ben, Goichi;Kihara, Yuichi;Nakamori, Keita;Aoki, Yoshio
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.361-376
    • /
    • 2007
  • Disposing of conventional fiber-reinforced polymers (FRPs) poses an environmentally challenging problem. Disposal of FRPs by combustion discharges carbon dioxide in the air because the resin of FRPs is made of fossil fuel. When they are disposed of in the ground, FRPs remain semipermanently without decomposing. In response to these problems, green composites are now being developed and are extensively studied as a material that produces a lower environmental burden. In this paper, green composites using kenaf fiber yarn bundles and PLA (poly(lactic acid)) are fabricated and their tensile properties are evaluated in the experiment. The tensile Young's modulus of all of the laminations is larger than that of PLA alone and the tensile strength of some laminations is larger than that of PLA alone. In particular, the value of UD composite of $0^{\circ$ shows double the tensile strength of PLA alone. Furthermore, the molding conditions for fabricating with a hot press are investigated and the heat resistant tensile properties of green composites are also reported.

Development and mechanical properties of bagasse fiber reinforced composites

  • Cao, Yong;Goda, Koichi;Shibata, Shinichi
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.283-298
    • /
    • 2007
  • Environment-friendly composites reinforced with bagasse fiber (BF), a kind of natural fiber as the remains from squeezed sugarcane, were fabricated by injection molding and press molding. As appropriate matrices for injection molding and press molding, polypropylene (PP) and polycaprolactone-cornstarch (PCL-C) were selected, as a typical recyclable resin and biodegradable resin, respectively. The mechanical properties of BF/PP composites were investigated in view of fiber mass fraction and injection molding conditions. And the mechanical properties and the biodegradation of BF/PCL composites were also evaluated. In the case of injection molding, the flexural modulus increased with an increase in fiber mass fraction, and the mechanical properties decreased with an increase in cylinder temperature due to the thermal degradation of BF. The optimum conditions increasing the flexural properties and the impact strength were $90^{\circ}C$ mold temperature, 30 s injection interval, and in the range of 165 to $185^{\circ}C$ cylinder temperature. On the other hand, as to BF/PCL-C fully-green composites, both the flexural properties and the impact strength increased with an increase in fiber mass fraction. It is considered that the BF compressed during preparation could result in the enhancement in mechanical properties. The results of the biodegradability test showed the addition of BF caused the acceleration of weight loss, which increased further with increasing fiber content. This reveals that the addition and the quantities of BF could promote the biodegradation of fully-green composites.