• 제목/요약/키워드: perturbation solution

검색결과 244건 처리시간 0.03초

불규칙한 외부 교란이 주기적 가진을 받는 비선형계의 동적 특성에 미치는 영향 (Noise Effect in a Nonlinear System Under Harmonic Excitation)

  • 박시형;김지환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.145-153
    • /
    • 1997
  • Dynamic characteristics are investigated when a nonlinear system showing periodic and chaotic responses under harmonic excitation is exposed to random perturbation. About two well potential problem, probability of homoclinic bifurcation is estimated using stochastic generalized Meinikov process and quantitive characteristics are investigated by calculation of Lyapunov exponent. Critical excitaion is calculated by various assumptions about Gaussian Melnikov process. To verify the phenomenon graphically Fokker-Planck equation is solved numerically and the original nonlinear equation is numerically simulated. Numerical solution of Fokker-Planck equation is calculated on Poincare section and noise induced chaos is studied by solving the eigenvalue problem of discretized probability density function.

  • PDF

VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

  • Mohyud-Din, Syed Tauseef;Noor, Muhammad Aslam;Waheed, Asif
    • 대한수학회논문집
    • /
    • 제24권4호
    • /
    • pp.605-615
    • /
    • 2009
  • In this paper, we develop a reliable algorithm which is called the variation of parameters method for solving sixth-order boundary value problems. The proposed technique is quite efficient and is practically well suited for use in these problems. The suggested iterative scheme finds the solution without any perturbation, discritization, linearization or restrictive assumptions. Moreover, the method is free from the identification of Lagrange multipliers. The fact that the proposed technique solves nonlinear problems without using the Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested technique.

이산화탄소의 항균 효과 (Antimicrobial Effect of Carbon Dioxide on Microorganisms)

  • 홍석인;변유량
    • 한국식품영양과학회지
    • /
    • 제26권6호
    • /
    • pp.1258-1267
    • /
    • 1997
  • Corbon dioxide id effective for extending the shelf-life of perishable foods by retarding microbial growth. The overall effect of carbon dioxide is to increase both the lag phase and generation time of microorganisms. However, the role of carbon dioxide in affecting the growth and metabolism of any given microorganisms is not clear yet, although its inhibitory effect is generally found at moderate to high concentrations. Systematic studies of the effects of carbon dioxide on microorganisms are therefore warranted. It is also necessary to understand the role of carbon dioxide in the preservation of foods as well as the control by carbon dioxide of fermentations of biotechnological importance. In this review, the antimicrobial effect of carbon dioxide on microorganisms is investigated in terms of its gas and solution properties, inhibition of microbial growth and specific metabolic processes, perturbation of membrane structure.

  • PDF

Solvent Effect on Relative Gibbs Free Energy and Structural Property of $Eu^{3+}\;to\;Yb^{3+}$ Ion Mutation: A Monte Carlo Simulation Study

  • 김학성
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권8호
    • /
    • pp.877-882
    • /
    • 2001
  • The solvent effects on the relative free energies of Eu3+ to Yb3+ ion mutation in solution have been investigated using a Monte Carlo simulation of statistical perturbation theory (SPT). Our results agree well with available data that were obtained by others. Particularly, the results of water (SPC/E) solvent are almost identical with experimental data. For the present Eu3+ and Yb3+ ions, the relative free energies of solvation vs. Born’s function of bulk solvents decrease with increasing Born’s function of bulk solvents. There is also good agreement between the calculated structural properties in this study and the published works obtained by computer simulation and experimental work.

A Nonlinear Theory for the Oregonator Model with an External Input

  • Ryu Moon Hee;Lee Dong J.;Lee Sangyoub;Shin Kook Joe
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권6호
    • /
    • pp.488-496
    • /
    • 1994
  • An approximate nonlinear theory of the Oregonator model is obtained with the aid of an ordinary perturbation method when the system is perturbed by some kinds of external input. The effects of internal and external parameters on the oscillations are discussed in detail by taking specific values of the parameters. A simple approximate solution for the Oregonator model under the influence of a constant input is obtained and the result is compared with the numerical result. For other types of external inputs the approximate solutions up to the fourth order expansion are compared with the numerical results. For a periodic input, we found that the entrainment depends crucially on the difference between the internal and external frequencies near the bifurcation point.

A Nonlinear Theory for the Lotka-Volterra Model with an External lnput

  • Mino Yang;Sangyoub Lee;Seong Keun Kim;Kook Joe Shin;Moon Hee Ryu;Song Hi Lee;Dong J. Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권5호
    • /
    • pp.560-565
    • /
    • 1992
  • A new perturbation theory called the star expansion method is used to obtain an approximate nonlinear solution of the Lotka-Volterra model under the influence of some kinds of external input. The effects of nonlinearity, amplitude and frequency of the external input on the chemical oscillations in the model are evaluated by taking specific values for the model parameters, and the results are discussed in detail.

Locating a weakened interface in a laminated elastic plate

  • Zhu, J.;Yang, J.S.;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • 제41권6호
    • /
    • pp.751-758
    • /
    • 2012
  • We study thickness-shear (TSh) free vibrations of an unbounded, laminated elastic plate with three layers of different materials. One of the two interfaces is slightly weakened as described by the shear-lag model that allows the displacement to be discontinuous across the interface. A frequency equation is obtained from the linear theory of elasticity. A perturbation solution of the frequency equation is obtained from which the frequency shifts of TSh modes due to the weakened interface can be calculated. It is shown that the frequency shifts of TSh modes of different orders are different, and they satisfy different conditions when different interfaces are weakened. These conditions are obtained which can potentially be used as criteria for determining specifically which interface is weakened.

A WEAKLY COUPLED SYSTEM OF SINGULARLY PERTURBED CONVECTION-DIFFUSION EQUATIONS WITH DISCONTINUOUS SOURCE TERM

  • BABU, A. RAMESH;VALANARASU, T.
    • Journal of applied mathematics & informatics
    • /
    • 제37권5_6호
    • /
    • pp.357-382
    • /
    • 2019
  • In this paper, we consider boundary value problem for a weakly coupled system of two singularly perturbed differential equations of convection diffusion type with discontinuous source term. In general, solution of this type of problems exhibits interior and boundary layers. A numerical method based on streamline diffusiom finite element and Shishkin meshes is presented. We derive an error estimate of order $O(N^{-2}\;{\ln}^2\;N$) in the maximum norm with respect to the perturbation parameters. Numerical experiments are also presented to support our theoritical results.

Geometry and load effects on transient response of a VFGM annular plate: An analytical approach

  • Alavia, Seyed Hashem;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • 제70권2호
    • /
    • pp.179-197
    • /
    • 2019
  • In this article, the effect of different geometrical, materials and load parameters on the transient response of axisymmetric viscoelastic functionally graded annular plates with different boundary conditions are studied. The behavior of the plate is assumed the elastic in bulk and viscoelastic in shear with the standard linear solid model. Also, the graded properties vary through the thickness according to a power law function. Three types of mostly applied transient loading, i.e., step, impulse, and harmonic with different load distribution respect to radius coordinate are examined. The motion equations and the corresponding boundary conditions are extracted by applying the first order shear deformation theory which are three coupled partial differential equations with variable coefficients. The resulting motion equations are solved analytically using the perturbation technique and the generalized Fourier series. The sensitivity of the response to the graded indexes, different transverse loads, aspect ratios, boundary conditions and the material properties are investigated too. The results are compared with the finite element analysis.

Higher Order Uniformly Convergent Numerical Scheme for Singularly Perturbed Reaction-Diffusion Problems

  • Anilay, Worku Tilahun;Duressa, Gemechis File;Woldaregay, Mesfin Mekuria
    • Kyungpook Mathematical Journal
    • /
    • 제61권3호
    • /
    • pp.591-612
    • /
    • 2021
  • In this paper, a uniformly convergent numerical scheme is designed for solving singularly perturbed reaction-diffusion problems. The problem is converted to an equivalent weak form and then a Galerkin finite element method is used on a piecewise uniform Shishkin mesh with linear basis functions. The convergence of the developed scheme is proved and it is shown to be almost fourth order uniformly convergent in the maximum norm. To exhibit the applicability of the scheme, model examples are considered and solved for different values of a singular perturbation parameter ε and mesh elements. The proposed scheme approximates the exact solution very well.