References
- R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, world scientific, Singapore, 1986.
- G. Akram and S. S. Siddiqi, Solution of sixth order boundary value problems using non-polynomial spline technique, Appl. Math. Comput. 181 (2006), no. 1, 708–720. https://doi.org/10.1016/j.amc.2006.01.053
- P. Baldwin, Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global phase-integral methods, Phil, Trans. Roy. Soc. Lond. A 322 (1987), no. 1566, 281–305. https://doi.org/10.1098/rsta.1987.0051
- P. Baldwin, Localized instability in a Benard layer, Appl. Aal. 24 (1987), no. 1-2, 117-156
- A. Boutayeb and E. H. Twizell, Numerical methods for the solution of special sixth-order boundary value problems, Int. J. Comput. Math. 45 (1992), 207–233. https://doi.org/10.1080/00207169208804130
- S. Chandrasekhar, Hydrodynamics and Hydromagntic Stability, Dover, New York, 1981.
- M. M. Chawla and C. P. Katti, Finite difference methods for two-point boundary-value problems involving higher order differential equations, BIT 19 (1979), 27-33 https://doi.org/10.1007/BF01931218
- Y. Cherrauault and G. Saccomandi, Some new results for convergence of G. Adomian's method applied to integral equations, Math. Comput. Modeling 16 (1992), no. 2, 85-93 https://doi.org/10.1016/0895-7177(92)90009-A
- M. E. Gamel, J. R. Cannon, and A. I. Zayedm, Sinc-Galerkin method for solving linear sixth order boundary value problems, Appl. Math. Comput. 73 (2003), 1325-1343. https://doi.org/10.1090/S0025-5718-03-01587-4
- G. A. Glatzmaier, Numerical simulations of stellar convection dynamics at the base of the convection zone, geophysics. Fluid Dynamics 31 (1985), 137-150. https://doi.org/10.1080/03091928508219267
- J. H. He, Variational approach to the sixth order boundary value problems, Appl. Math. Comput. 143 (2003), 235-236 https://doi.org/10.1016/S0096-3003(02)00381-8
- W. X. Ma and Y. You, Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions, Trans. Amer. Math. Soc. 357 (2004), 1753-1778 https://doi.org/10.1090/S0002-9947-04-03726-2
- W. X. Ma and Y. You, Rational solutions of the Toda lattice equation in Casoratian form, Chaos, Solitons & Fractals 22 (2004), 395-406. https://doi.org/10.1016/j.chaos.2004.02.011
- S. T. Mohyud-Din and M. A. Noor, Homotopy perturbation method for solving partial differential equations, Zeitschrift fur Naturforschung A 64a (2009), 157–170
- S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, On the coupling of polynomials with correction functional, Int. J. Mod. Phys. B (2009).
- S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Some relatively new techniques for nonlinear problems, Math. Prob. Eng. 2009 (2009), Article ID 234849, 25 pages, doi:10.1155/2009/234849.
- S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Travelling wave solutions of seventh-order generalized KdV equations using He's polynomials, Int. J. Nonlin. Sci. Num. Sim. 10 (2009), no. 2, 223–229
- S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Modified variation of parameters method for solving partial differential equations, Int. J. Mod. Phys. B (2009)
- S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Modified variation of parameters method for differential equations, Wd. Appl. Sci. J. 6 (2009), no. 10, 1372–1376
- S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Modified variation of parameter technique for Thomas-Fermi and fourth-order singular parabolic equations, Int. J. Mod. Phys. B (2009)
- S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Ma's variation of parameters method for Burger's and telegraph equations, Int. J. Mod. Phys. B (2009)
- S. T. Mohyud-Din, M. A. Noor, and K. I. Noor, Modified variation of parameters method for second-order integro-differential equations and coupled systems, Wd. Appl. Sci. J. 6 (2009), no. 9, 1298–1303
- M. A. Noor and S. T. Mohyud-Din, Homotopy perturbation method for solving sixthorder boundary value problems, Comput. Math. Appl. 55 (2008), no. 12, 2953–2972 https://doi.org/10.1016/j.camwa.2007.11.026
- M. A. Noor and S. T. Mohyud-Din, Variational iteration method for solving higher-order nonlinear boundary value problems using He's polynomials, Int. J. Nonlin. Sci. Num. Simul. 9 (2008), no. 2, 141-157.
- M. A. Noor and S. T. Mohyud-Din, Homotopy perturbation method for nonlinear higher-order boundary value problems, Int. J. Nonlin. Sci. Num. Simul. 9 (2008), no. 4, 395-408
- M. A. Noor, S. T. Mohyud-Din, and A. Waheed, Variation of parameters method for solving fifth-order boundary value problems, Appl. Math. Inf. Sci. 2 (2008), 135-141.
- J. I. Ramos, On the variational iteration method and other iterative techniques for nonlinear differential equations, Appl. Math. Comput. 199 (2008), no. 1, 39-69 https://doi.org/10.1016/j.amc.2007.09.024
- S. S. Siddiqi and E. H. Twizell, Spline solutions of linear sixth-order boundary value problems, Int. J. Comput. Math. 60 (1996), 295-304 https://doi.org/10.1080/00207169608804493
- J. Toomore, J. P. Zahn, J. Latour, and E. A Spiegel, Stellar convection theory II: singlemode study of the secong convection zone in A-type stars, Astrophs. J. 207 (1976), 545-563 https://doi.org/10.1086/154522
- E. H. Twizell, Numerical methods for sixth-order boundary value problems, in: numerical Mathematics, Singapore, International Series of Numerical Mathematics, vol. 86, Birkhauser, Basel (1988), 495-506
- E. H. Twizell and A. Boutayeb, Numerical methods for the solution of special and general sixth-order boundary value problems, with applications to Benard layer Eigen value problem, Proc. Roy. Soc. Lond. A 431 (1990), 433-50 https://doi.org/10.1098/rspa.1990.0142
- A. M. Wazwaz, The numerical solution of sixth order boundary value problems by the modified decomposition method, Appl. Math. Comput. 118 (2001), 311-325. https://doi.org/10.1016/S0096-3003(99)00224-6
Cited by
- VARIATION OF PARAMETERS METHOD FOR SOLVING A CLASS OF EIGHTH-ORDER BOUNDARY-VALUE PROBLEMS vol.09, pp.02, 2012, https://doi.org/10.1142/S0219876212400269
- Soret and Dufour effects on Jeffery-Hamel flow of second-grade fluid between convergent/divergent channel with stretchable walls vol.7, 2017, https://doi.org/10.1016/j.rinp.2016.12.020
- Deficient discrete cubic spline solution for a system of second order boundary value problems vol.66, pp.4, 2014, https://doi.org/10.1007/s11075-013-9763-2
- Variation of parameters method with an auxiliary parameter for initial value problems 2017, https://doi.org/10.1016/j.asej.2016.09.014
- Effects on magnetic field in squeezing flow of a Casson fluid between parallel plates vol.29, pp.1, 2017, https://doi.org/10.1016/j.jksus.2015.03.006
- MHD squeezing flow between two infinite plates vol.5, pp.1, 2014, https://doi.org/10.1016/j.asej.2013.09.007
- Effects of Velocity Slip on MHD Flow of a Non-Newtonian Fluid in Converging and Diverging Channels vol.2, pp.4, 2016, https://doi.org/10.1007/s40819-015-0071-5
- An efficient algorithm on time-fractional partial differential equations with variable coefficients pp.2014, 2014, https://doi.org/10.5339/connect.2014.7
- Influence of shape factor on flow of magneto-nanofluid squeezed between parallel disks 2018, https://doi.org/10.1016/j.aej.2017.03.031
- Analytical and numerical investigation of thermal radiation effects on flow of viscous incompressible fluid with stretchable convergent/divergent channels vol.224, 2016, https://doi.org/10.1016/j.molliq.2016.10.073
- On unsteady two-dimensional and axisymmetric squeezing flow between parallel plates vol.53, pp.2, 2014, https://doi.org/10.1016/j.aej.2014.02.002
- Analysis of magnetohydrodynamic flow and heat transfer of Cu–water nanofluid between parallel plates for different shapes of nanoparticles 2016, https://doi.org/10.1007/s00521-016-2596-x
- Variation of Parameters Method for Heat Diffusion and Heat Convection Equations vol.3, pp.1, 2017, https://doi.org/10.1007/s40819-015-0098-7
- Variation of Parameters Solution for Two Dimensional Flow of a Viscous Fluid Between Dilating and Squeezing Channel with Permeable Walls vol.3, pp.2, 2017, https://doi.org/10.1007/s40819-016-0183-6
- An Efficient Algorithm for Some Highly Nonlinear Fractional PDEs in Mathematical Physics vol.9, pp.12, 2014, https://doi.org/10.1371/journal.pone.0109127
- Optimal solutions for a bio mathematical model for the evolution of smoking habit vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.01.001
- An Efficient Method for Solving System of Third-Order Nonlinear Boundary Value Problems vol.2011, 2011, https://doi.org/10.1155/2011/250184
- Heat Transfer Analysis of Third-Grade Fluid Flow Between Parallel Plates: Analytical Solutions vol.3, pp.2, 2017, https://doi.org/10.1007/s40819-015-0109-8
- Squeezing flow of MHD fluid between parallel disks vol.19, pp.1, 2018, https://doi.org/10.1080/15502287.2016.1259275
- A simple efficient method for solving sixth-order nonlinear boundary value problems pp.1807-0302, 2018, https://doi.org/10.1007/s40314-018-0643-1