• Title/Summary/Keyword: performance objective

Search Result 5,781, Processing Time 0.031 seconds

Optimum maintenance scenario generation for existing steel-girder bridges based on lifetime performance and cost

  • Park, Kyung Hoon;Lee, Sang Yoon;Yoon, Jung Hyun;Cho, Hyo Nam;Kong, Jung Sik
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.641-653
    • /
    • 2008
  • This paper proposes a practical and realistic method to establish an optimal lifetime maintenance strategy for deteriorating bridges by considering the life-cycle performance as well as the life-cycle cost. The proposed method offers a set of optimal tradeoff maintenance scenarios among other conflicting objectives, such as minimizing cost and maximizing performance. A genetic algorithm is used to generate a set of maintenance scenarios that is a multi-objective combinatorial optimization problem related to the lifetime performance and the life-cycle cost as separate objective functions. A computer program, which generates optimal maintenance scenarios, was developed based on the proposed method using the life-cycle costs and the performance of bridges. The subordinate relation between bridge members has been considered to decide optimal maintenance sequence and a corresponding algorithm has been implemented into the program. The developed program has been used to present a procedure for finding an optimal maintenance scenario for steel-girder bridges on the Korean National Road. Through this bridge maintenance scenario analysis, it is expected that the developed method and program can be effectively used to allow bridge managers an optimal maintenance strategy satisfying various constraints and requirements.

The Influence of Educational Training Program Traits Perceived by Employee on Organizational Effectiveness and Job Performance (근로자가 인식한 교육훈련 프로그램 특성이 조직유효성 및 직무성과에 미치는 영향)

  • Lee, Won-Seok;Ju, Dong-Beom
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.2
    • /
    • pp.349-363
    • /
    • 2013
  • Using data from 286 employees who were working in medium and small company in Busan, the study analyzed the influence of educational training program traits perceived by employee on organizational effectiveness and job performance. The main results were as the followings. First, for organizational effectiveness, job relation and objective setting among educational training program traits had statistically significant influence on job satisfaction and involvement in organization after controlling the employee's characteristics. Second, for job performance, after controling the employee's characteristics, job relation, educational method, educational training environment, and objective setting had statistically significant influence on active participation, the improvement of task performance ability and confidence, or professional knowledge improvement. Additionally, among the employee's characteristics, the number of educational training participation was statistically significant predictor for job performance. Based on the main results, some suggestions and the limitations of the study were discussed.

A Study on the Development Direction of a BIM Performance Assessment Tool (BIM 수행성과 평가도구의 개발방향에 대한 연구)

  • Kang, Tae Wook;Won, Jongsung;Lee, Ghang
    • Spatial Information Research
    • /
    • v.21 no.1
    • /
    • pp.53-62
    • /
    • 2013
  • The purpose of this study is to suggest the development direction of a BIM performance assessment tool. To do this, a series of focused group interviews were conducted with BIM experts in South Korea regarding the objective, characteristic, potential problems of a BIM performance assessment tool. A survey questionnaire was developed based on the focused group interviews and distributed to practitioners through four different occasions. The survey results showed that there were the significant differences between practitioners by their field and years of experience about the objective, characteristic, potential problems of a BIM performance assessment tool. Based on the survey results, the consideration factors for developing a BIM performance assessment tool was suggested.

A Survey for Performance Measurement Indicators of Nursing Organizations in Hospitals (병원 간호조직의 성과평가지표에 관한 조사 연구)

  • Lee, Hae-Jong;Kang, Kyeong-Hwa;Jang, Soo-Jung;Kim, In-Sook
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.11 no.4
    • /
    • pp.385-399
    • /
    • 2005
  • Objective: The objective was to extract a preliminary performance measurement indicators of nursing organizations in hospitals using the BSC(Balanced Score Card) developed by Kaplan and Norton, and to analyze the content validity and evaluation methods of the performance measurement indicators with actual nurses in the nursing organization as participants in the study. Methods: The preliminary performance measurement indicators was created through a literature review and had the content validity by a professional. This survey was sent via post to 316 nurse managers and nurses with more than 5 years of experience in seven secondary and tertiary hospitals in the Seoul Gyonggi district. The completed questionnaires were returned by mail. Results: Fourteen indicators for finances, 16 for customer services, 27 for internal business processes, and 13 for learning and growth were selected. Conclusion: Amidst a rapidly changing medical environment, a first step was taken towards developing a performance measurement from various perspectives for nursing organizations in hospitals from various perspectives, rather than just one or a past-oriented perspective. However, as the most important thing is to actually use these indicators, continuous interest in publicity and education must be developed.

  • PDF

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

A numerical study on optimal FTMD parameters considering soil-structure interaction effects

  • Etedali, Sadegh;Seifi, Mohammad;Akbari, Morteza
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.527-538
    • /
    • 2018
  • The study on the performance of the nonlinear friction tuned mass dampers (FTMD) for the mitigation of the seismic responses of the structures is a topic that still inspires the efforts of researchers. The present paper aims to carry out a numerical study on the optimum tuning of TMD and FTMD parameters using a multi-objective particle swarm optimization (MOPSO) algorithm including soil-structure interaction (SSI) effects for seismic applications. Considering a 3-story structure, the performances of the optimized TMD and FTMD are compared with the uncontrolled structure for three types of soils and the fixed base state. The simulation results indicate that, unlike TMDs, optimum tuning of FTMD parameters for a large preselected mass ratio may not provide a best and optimum design. For low mass ratios, optimal selection of friction coefficient has an important key to enhance the performance of FTMDs. Consequently, a free parameter search of all FTMD parameters provides a better performance in comparison with considering a preselected mass ratio for FTMD in the optimum design stage of the FTMD. Furthermore, the SSI significant effects on the optimum design of the TMD and FTMD. The simulation results also show that the FTMD provides a better performance in reducing the maximum top floor displacement and acceleration of the building in different soil types. Moreover, the performance of the TMD and FTMD decrease with increasing soil softness, so that ignoring the SSI effects in the design process may give an incorrect and unrealistic estimation of their performance.

Knee-driven many-objective sine-cosine algorithm

  • Hongxia, Zhao;Yongjie, Wang;Maolin, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.335-352
    • /
    • 2023
  • When solving multi-objective optimization problems, the blindness of the evolution direction of the population gradually emerges with the increase in the number of objectives, and there are also problems of convergence and diversity that are difficult to balance. The many- objective optimization problem makes some classic multi-objective optimization algorithms face challenges due to the huge objective space. The sine cosine algorithm is a new type of natural simulation optimization algorithm, which uses the sine and cosine mathematical model to solve the optimization problem. In this paper, a knee-driven many-objective sine-cosine algorithm (MaSCA-KD) is proposed. First, the Latin hypercube population initialization strategy is used to generate the initial population, in order to ensure that the population is evenly distributed in the decision space. Secondly, special points in the population, such as nadir point and knee points, are adopted to increase selection pressure and guide population evolution. In the process of environmental selection, the diversity of the population is promoted through diversity criteria. Through the above strategies, the balance of population convergence and diversity is achieved. Experimental research on the WFG series of benchmark problems shows that the MaSCA-KD algorithm has a certain degree of competitiveness compared with the existing algorithms. The algorithm has good performance and can be used as an alternative tool for many-objective optimization problems.

Optimum Tire Contour Design Using Systematic STOM and Neural Network

  • Cho, Jin-Rae;Jeong, Hyun-Sung;Yoo, Wan-Suk;Shin, Sung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1327-1337
    • /
    • 2004
  • An efficient multi-objective optimization method is presented making use of neural network and a systematic satisficing trade-off method (STOM), in order to simultaneously improve both maneuverability and durability of tire. Objective functions are defined as follows: the sidewall-carcass tension distribution for the former performance while the belt-edge strain energy density for the latter. A back-propagation neural network model approximates the objective functions to reduce the total CPU time required for the sensitivity analysis using finite difference scheme. The satisficing trade-off process between the objective functions showing the remarkably conflicting trends each other is systematically carried out according to our aspiration-level adjustment procedure. The optimization procedure presented is illustrated through the optimum design simulation of a representative automobile tire. The assessment of its numerical merit as well as the optimization results is also presented.

Structure-Control Combined Optimal Design of 3-D Truss Structure Considering Intial State and Feedback Gain

  • Park, Jung-Hyen
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.66-72
    • /
    • 2003
  • This paper proposes an optimum, problematic design for structural and control systems, taking a 3-D truss structure as an example. The structure is subjected to initial static loads and time-varying disturbances. The structure is controlled by a state feedback H$_{\infty}$ controller which suppress the effects of disturbances. The design variables are the cross sectional areas of truss members. The structural objective function is the structural weight. For the control objective, we consider two types of performance indices, The first function represents the effect of the initial loads. The second function is the norm of the feedback gain, These objective functions are in conflict with each other but are transformed into one control objective by the weighting method. The structural objectives is treated as the constraint, By introducing the second control objective which considers the magnitude of the feedback gain, we can create a design to model errors.

The Optical Design of Miniaturized Microscope Objective for CARS Imaging Catheter with Fiber Bundle

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.424-430
    • /
    • 2010
  • In coherent anti-Stokes Raman scattering (CARS) microscopy reported until now, conventional microscope objectives are used, so that they are limited for introduction into a living body. Gradient-index (GRIN) rod lenses might be a solution for miniaturized microscope objectives for in-vivo CARS microscopy. However, due to the inherent large amount of chromatic aberration, GRIN rod lenses cannot be utilized for this purpose. CARS imaging catheter, composed of miniaturized microscope objective and fiber bundle, can be introduced into a living body for minimally invasive diagnosis. In order to design the catheter, we have to first investigate design requirements. And then, the optical design is processed with design strategies and intensive computing power to achieve the design requirements. We report the miniaturized objective lens system with diffraction-limited performance and completely corrected chromatic aberrations for an in-vivo CARS imaging catheter.