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Abstract 

 
When solving multi-objective optimization problems, the blindness of the evolution direction 
of the population gradually emerges with the increase in the number of objectives, and there 
are also problems of convergence and diversity that are difficult to balance. The many-
objective optimization problem makes some classic multi-objective optimization algorithms 
face challenges due to the huge objective space. The sine cosine algorithm is a new type of 
natural simulation optimization algorithm, which uses the sine and cosine mathematical model 
to solve the optimization problem. In this paper, a knee-driven many-objective sine-cosine 
algorithm (MaSCA-KD) is proposed. First, the Latin hypercube population initialization 
strategy is used to generate the initial population, in order to ensure that the population is 
evenly distributed in the decision space. Secondly, special points in the population, such as 
nadir point and knee points, are adopted to increase selection pressure and guide population 
evolution. In the process of environmental selection, the diversity of the population is 
promoted through diversity criteria. Through the above strategies, the balance of population 
convergence and diversity is achieved. Experimental research on the WFG series of 
benchmark problems shows that the MaSCA-KD algorithm has a certain degree of 
competitiveness compared with the existing algorithms. The algorithm has good performance 
and can be used as an alternative tool for many-objective optimization problems. 
 
 
Keywords: Evolutionary computations, Many-objective optimization, Knee points, Sine 
cosine algorithm, Latin square sampling 
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1. Introduction 

With the growth of society’s demand for production, multi-objective optimization problems 
in real life become more and more complex, and more and more objective problems need to 
be considered [1]. Therefore, the current existing evolutionary algorithms face many 
challenges in solving multi-objective optimization problems [2]. For instance, the blindness of 
the evolution direction of the population, the inefficiency of the dominance relationship, the 
imbalance of convergence and diversity, the difficulty of visualizing the set of real solutions, 
etc [3, 4].  

As the number of objective increases, the proportion of non-dominated solutions in the 
population among feasible solutions will increase explosively, and the selection pressure to 
promote the evolution of the population decreases, resulting in invalid dominance relations [5, 
6]. In response to this problem, some scholars try to increase the selection pressure by changing 
the dominance relationship, which means using new dominance relationships to increase the 
selection pressure of the evolutionary population. For example, r dominates, ε dominates [7] 
and other dominance relations. Although these dominance relationships can select individuals 
with strong convergence under certain circumstances to maintain the diversity and 
convergence of the population, such methods involve parameter values, which have great 
uncertainty [8].  

The other method is indicator-based approach: In order to obtain the optimal solution 
ranking in the objective space, many scholars use multi-objective algorithms based on 
evaluation indicators to deal with Many-objective Optimization Problems (MaOPs), such as 
IBEA [9], SMSEMOA [10], HypE [11], DNMOEA/HI [12] and so on. However, it is worth 
noting that although this type of algorithm has good results when dealing with MaOPs, as the 
number of targets increases sharply, the computational cost of some of the performance 
indicators used by these algorithms will also rise sharply.  

Another approach is the reference set-based approach: this algorithm mainly uses a set of 
reference information to assist in measuring the quality of the solution and guide the search 
process in this way. Praditwong and Wang respectively proposed a new two- archive 
algorithm [13]. The Convergence Archive can be considered a true reference collection for 
online updates. In addition, VaEA [14] takes population individuals as the reference set to 
dynamically guide the evolution process. NSGA-III [15] is a representative algorithm. In this 
algorithm, a set of predefined reference points are used to strengthen and consolidate the 
convergence and distribution of candidate solutions. Since then, scholars have also proposed 
the use of reference points or reference vector-guided evolutionary algorithms for multi-
objective optimization methods [16,17] and so on. However, for this type of problem, how to 
reasonably evaluate and screen candidate solution individuals by combining reference 
information is one of the key issues in the design and implementation of this type of algorithm. 
However, they all need to rely on pre-defined reference vectors [18–20]. 

Sine cosine algorithm (SCA) is a new type of natural simulation optimization algorithm 
proposed in 2016 [21]. The algorithm generates multiple random candidate solutions and 
optimizes them using the sine-cosine mathematical model [22]. The problem has the 
characteristics of simple structure, few parameters, and easy implementation, but there are also 
problems such as low optimization accuracy, easy to fall into local extremes, and slow 
convergence speed [23]. The quality of the initial population will affect the convergence speed 
and accuracy. The initial population of the SCA algorithm is randomly generated, and the 
diversity of the population and the reasonableness of the distribution in the search space cannot 
be guaranteed. In other words, random sampling does not do a good job of spreading the 
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sample across the interval when the sample size is small. Unlike random sampling, Latin 
hypercube sampling [24] has the property of uniform stratification, and has the ability to obtain 
tail sample values in the case of less sampling. Therefore, the MaSCA-KD generates a more 
uniform initial point by introducing the Latin hypercube sampling method. 

When dealing with MOP, the judgment of the quality of non-dominated solutions is often 
ambiguous during the evolution process. During evolution, the utilization of knee points in 
non-dominated solutions can improve the convergence performance of optimization 
algorithms, because the bias towards knee points is shown to be an approximation of the bias 
towards large hypervolumes [25]. Knee points are naturally the most popular of the non-
dominated solutions if there is no clear decision maker preference [26]. Therefore, in recent 
years, many scholars have begun to pay attention to the use of knee points. When dealing with 
dynamic multi-objective optimization problems, Zou et al. [27] introduced knee point sets in 
the forecasting population, so as to accurately predict the position and distribution of Pareto 
fronts after environmental changes. Subsequently, they used weights to divide the whole 
population into several subpopulations in another work, and the knee point in each 
subpopulation acts as a leader to guide other solutions to search [28]. In literature [29], non-
dominated solutions are selected near knee joints and boundary regions, so that the burden of 
maintaining large and diverse populations throughout evolution is reduced. In addition to knee 
points, other information in the population can also guide the evolution of the population, such 
as boundary points. Li et al. introduced a special set of points (such as boundary points and 
knee points) in the prediction population, which can more accurately track the Pareto front or 
Pareto set [30]. Through these special solutions, the evolutionary information of the population 
is reflected. Making full use of this information to guide the evolution process can well balance 
the convergence and diversity of the population. 

The main contributions of this paper are highlighted as follows. 
● First of all, in the initial population stage, the Latin hypercube population initialization 

strategy is used to initialize the population, which can avoid missing part of the valuable search 
space, so as to improve the diversity of the initial population and the rationality of the 
distribution in the search space.  

● Secondly, the environmental information in the population evolution process is worthy 
of being used. The ideal point in the population can be used to reduce the search space and 
increase the selection pressure; the inflection point of the population can also be used to update 
the global extremum to improve convergence.  

● When making environmental choices, it is necessary to maintain the diversity of the 
population. The knee points and extreme points of the population are given priority, and the 
solution with the largest difference from the selected solution set is selected as the candidate 
solution from the remaining population. 

Following, Section 2 presents the main background knowledge. Section 3 describes 
MaSCA-KD. Next, the experimental design and results is recorded. Finally, the fifth section 
is the conclusion and future research directions. 

2. Background Knowledge 

2.1 Many-objective Optimization Problems 
MaOPs refer to MOPs whose objective dimensions exceed 4 [3, 19, 31]. Without loss of 

generality, taking minimization as an example, the general expression of high-dimensional 
multi-objectives is as follows: 
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{ }1 2 3Min   ( ) ( ), ( ), ( ) ( )mF X f X f X f X f X=                                   (1) 
where, ( =1,2,3 )if i m are conflicting objective functions and 4m ≥ . A solution 

1 2 3=( , , )DX x x x x , and D  is the dimension of decision variables. 

2.2 The standard Sine Cosine algorithm 
The basic idea of the sine-cosine algorithm is to use the oscillating characteristics of the 

sine-cosine function to gradually converge to the optimal solution, explore the outward 
fluctuations globally, and develop locally toward the optimal solution fluctuations. SCA 
divides the optimization process into two phases: the exploration and the development. The 
global optimal solution is continuously approached through the search and development stages. 
The position update equation for the two stages of SCA is as follows: 

1
, , 1 2 3 ,sin( )  rand 0.5m g g g

i k i k best i kX X r r r P X if+ = + × × × − < ，                             (2) 
1

, , 1 2 3 ,cos( ) .g g g g
i k i k best i kX X r r r P X otherwise+ = + × × × −                              (3) 

where ,
g
i kX  represents the value of the iX  in the k-th decision space in the g-th generation; the 

update of 1r  is shown in (4). 

1
max

=a-a gr
G

                                                                 (4) 

In Eq.(4), a  equal to 2; maxG  is the maximum number of generation; [ ]2 0,  2r π∈ , [ ]3 -2,  2r ∈  
and [ ]1rand 0,  ∈ are random numbers; t

bestP is the global optimal position at the t-th iteration. 
If the SCA algorithm is used for optimization, the following steps need to be performed in 

sequence. First of all, initialize the population position and related parameters, calculate the 
individual fitness value, and save it according to the best. Secondly, in the main loop, update 
the parameter r1 according to (4), and under the control of the switching probability r4, it is 
determined that the individual chooses the way to update the position: sine or cosine, and then 
calculates the individual fitness value and updates the global optimum. When the maximum 
number of iterations is encountered (that is, the termination condition is satisfied), the loop is 
exited and the optimal solution is output. The location update method performed by individuals 
is dimension-by-dimension update, and SCA has strong global exploration and local 
development capabilities. SCA uses the sine-cosine conversion mechanism to make the 
algorithm have better optimization capabilities when solving optimization functions. 

3. MaSCA-KD 

The details of the proposed knee-driven many-objective sine-cosine algorithm (MaSCA-
KD) are documented in this section. 

3.1 Framework of MaSCA-KD 
The first part of MaSCA-KD is the initialization phase (lines 1-6 in Algorithm 1). Unlike 

most many-objective optimization algorithms, N individuals are created based on Latin 
hypercube sampling rather than random. The knee points in the population is employed to 
update the global extremum of SCA. At the end of the initialization phase, initialize the 
convergence point based on the initial population.  
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The second part of MaSCA-KD is the is the loop iteration stage (lines 7-15 in Algorithm 
1). The iteration cycle does not terminate if the maximum number of iterations ( maxT ) is not 
reached. First, offspring populations are generated by SCA (line 9 in Algorithm 1). After 
evaluating the progeny population, the knee points of the mixed population (i.e., UintPOP) 
are used to update bestP  (line 12 in Algorithm 1). Finally, the environment selection operation 
is performed for the mixed population, and N candidate solutions are selected for output (line 
13 in Algorithm 1). 
 

Algorithm 1 Framework of the proposed MaSCA-KD 
Input: N, maxT  
Output: POP 
  1:  First part: Initialization 
2:  t=0 
3:  Initialize N population (POP) based on Latin hypercube sampling 
4:  Evaluate the fitness value of POP according to fitness function 
5:  Update bestP  by knee points 
6:  Initialize convergence point ConP 
7:  The second part: Loop and Iteration 
8:  while maxt T<  do 
9:      Q = Reproduction(POP)  // according to Eq.(1) and Eq.(2) 
10:     Evaluate the fitness value of Q according to fitness function 
11:     UnitPOP = POP 


 Q  

12:     Update bestP  of SCA by knee points in UintPOP 
13:     (POP, ConP)=Environmentalsel(UnitPOP, ConP) 
14:     t= t +1 
15:  end while 
16:  Output POP 

3.2 Initialization based on Latin hypercube sampling 
The initial population of the Latin hypercube population initialization strategy will affect 

the convergence speed and accuracy. Latin hypercube sampling is a method proposed by 
McKay to approximate random sampling from a multivariate parametric distribution [24]. The 
initial population of the SCA algorithm is randomly generated, and the diversity of the 
population and the reasonableness of the distribution in the search space cannot be guaranteed, 
so the MaSCA-KD generates a more uniformly distributed initial point by introducing the 
Latin hypercube sampling method. Random sampling obeys a uniform distribution in the 
interval [0,1]. In the case of a small number of samples, random distribution cannot spread the 
sample to the entire interval well. The convergence speed and accuracy of the algorithm are 
affected by the quality of the initial population to a certain extent, and the randomly generated 
initial population cannot guarantee the rationality of the search space distribution and the 
diversity of the population.  

Unlike random sampling, the characteristics of uniform stratification and equal probability 
sampling of Latin hypercube sampling can ensure that the variables generated by it cover the 
entire distribution space [32].  
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The initial population is to generate a population with a population size of N in the D-
dimensional space. Therefore, combined with the Latin hypercube sampling method, the 
specific steps to obtain the population initialization strategy are as follows: 

1. Enter the dimension D of the population and the size N of the population; 
2. Define the interval of variable X as [lb, ub], where lb and ub are the lower and upper 

bounds of the variable, respectively;  
3. Divide the [lb,ub] interval into N equal subintervals; 
4. In each dimension, a point in each subinterval is selected randomly; 
5. Combine the points extracted from each dimension in step 4 to form a set as the initial 

population. 
Through the initialization of the population through the above steps, the individuals of the 

initial population will cover the entire search space as much as possible, the diversity of the 
initial population will be improved, and the optimization performance of the algorithm will 
become better. 
 

3.3 Convergence Point Driven Strategy 
Although MOEAs are considered to be the most effective method for dealing with MOPs, 

most of the researches are limited to the MOPs with 2 or 3 objectives. The increase in the 
number of targets not only makes the problem itself more complicated and difficult to solve. 
Therefore, the difficulty in solving the super multi-objective optimization problem is the 
problem of the convergence of the huge search space. 

 
Fig. 1. Schematic diagram of convergence point 

 
In this paper, the convergence point is introduced to increase the convergence pressure of 

the population. The convergence point can be regarded as the nadir point, that is,  
max max max

1 2[ , , , ]mConp f f f=  . The convergence points of the previous generation are used in 
the next-generation environmental selection mechanism to ensure the full use of historical 
information. 

As shown in Fig. 1, the population for two consecutive generations is plotted. The 
convergence area formed by the convergence points selected in the t-th generation guarantees 
the improvement of convergence in the next iteration. In other words, in the (t+1)-th generation, 
all individuals whose population overflows the convergence area are eliminated. 
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3.4 Knee point drive strategy 

 
Fig. 2. Schematic diagram of knee point determination 

 
In the multi-objective optimization algorithm, knee points are the solutions in a subset of 

the Pareto optimal solution set. This type of solution is intuitively represented as the 
most ”concave” part of the Pareto front surface. Near these knee points, a slight decrease in 
the target value in any one dimension results in a large increase in the target value in the other 
dimensions. Therefore, while the pre-Pareto solutions do not dominate each other, the knee 
joints outperform the other solutions to some extent. 

As shown in Fig. 2, the black dots in the figure represent individuals in the current 
population. If you want to find the knee point, you need to follow the steps below.  

1. Find the two end points of the population, namely A and B in Fig. 2. 
2. Link the end points to form a straight line and judge the knee point, that is the solid line 

Line in Fig. 2.  
3. Calculate the vertical distance from all individuals to the Line, and the point with the 

largest vertical distance is the knee point of the population, that is, point E in the figure.  
It can be observed from Fig. 2 that the convergence of point E is obviously better than that 

of other individuals. Therefore, using knee points to define the global extremum can improve 
the convergence of the population. 
 

3.5 Environmental selection mechanism 
When designing the solution selection mechanism, two aspects need to be considered: 

convergence and diversity. In this paper, the convergence point and the inflection point are 
used to improve the convergence of the current population, and then the candidate solutions 
are screened by the diversity difference method to achieve a balance between convergence and 
diversity. 
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Algorithm 2 (POP, ConP) = Environmentalsel(UnitPOP,ConP) 
Input: UnitPOP, ConP 
Output: POP 
  1:  Pr ( , )UnitPOP essure UnitPOP ConP=   // according to Section 3.3 
2:   K = Findknee(UnitPOP)   // according to Section 3.4 
3:  { }1 2, , , MPOPsel K EX EX EX=    
4:  UnitPOP UnitPOP POPsel= −  
5:  while POPsel N<  do     // supplement to the set of candidate solutions 
6:       = ( , )L Maxangle UnitPOP POPsel  
7:       =POPsel POPsel L  
8:        Remove L from UnitPOP 
9:   end while 
10:  =POP POPsel  
11:   Return POP 
 
Algorithm 2 gives the pseudocode of the environment selection process. For the mixed 

population UnitPOP, pruning is carried out according to the convergence point driving 
strategy. According to the description in Section 3.3, the individuals outside the convergence 
range in the population are removed to ensure the convergence of the population (line 1 in 
Algorithm 2). Then, select the knee points in the population for preservation. The purpose of 
this is to preserve the population’s astringent individuals and further enhance the population’s 
convergence. Next, record and save the extreme solution ( { }1 2, , , MEX EX EX  of the 
population (line 2 in Algorithm 2).  

Boundary points and knee points are extremely important special points, and the evolution 
of the population is guided by them. Therefore, they are preferentially selected as candidate 
solutions (line 3 in Algorithm 2). Then, in order to ensure the diversity, a solution with the 
greatest diversity in the remaining population is selected into the candidate solution set. If the 
number of candidate solutions in the current candidate solution set is less than N, find the 
solution L with the largest difference from the current candidate solution set (that is, the 
solution L with the largest angle with all individuals in the current candidate solution set) as 
one of the next generation candidate solution set individual, and then add it to the candidate 
solution set (lines 5-9 in Algorithm 2). Repeat the above steps until N individuals are selected 
to form a new round of candidate solution sets, and finally output candidate solution sets. 

In Algorithm 2, driven by the convergence point, retaining the knee points further enhances 
the convergence of the population, and the most differentiated solution selection method is 
used to ensure the diversity of the solution set. Therefore, the convergence and diversity of the 
final solution set reach a balance. 

4. Experimental Result 
To verify the performance of MaSCA-KD, the WFG series test set [33] was selected for 

experimental research. Table 1 shows the test problems and their characteristics. The most 
representative algorithms in recent years are selected as comparison algorithms, including 
NSGA-III [15], MOEA/DD [34], MaPSO [3], KnEA [25] and RVEA [16]. Table 2 records 
the parameters of each comparison algorithm. 
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4.1  Experimental settings 
Suppose a D-dimensional optimization problem with M objectives, the value of M is 3, 5 

or 7 for each test function chosen to be used, and 9D M= + . The value of the position-
related variable k  is 1M − , and the value of the distance-related variable l  is D k− . 

The WFG series of test functions is one of the most widely used test function sets for multi-
objective and many-objective optimization problems. The objective of these test functions and 
the number of decision variables can be given by the user. Furthermore, different test functions 
have different characteristics, such as convex, concave, mixed of convex and concave, biased, 
separable and so on. Hence, we employed WFG series of test problems to test the performance 
of the proposed algorithm. The characteristics and general parameters of these test functions 
are presented in Table 1 and Table 2. For the mathematical representation of these test 
functions, see the original reference. 
 

Table 1.   Characteristics and setting of the WFG series of test functions 
Function      Characteristic M D 
WFG1     Mixed, Biased, Separable, Biased 

3, 5, 7 12, 14, 16 

WFG2    Convex, Unimodal, Disconnected 
WFG3     Degenerate, linear 
WFG4     Separable, Multi-modal, Concave 
WFG5     Deceptive, Separable, Concave 
WFG6     Unimodal, Concave 
WFG7     Biased, Separable, Concave 
WFG8    Biased, Non-separable, Concave 
WFG9     Multi-modal, Biased, Deceptive, Concave 

 
Table 2.   Parameter settings  

Name                                               Parameter 
MaSCA-KD              max =300T , =1.0cp , m =1/Dp , 20c mη η= =  
NSGA-III                 max =300T , =1.0cp , m =1/Dp , 20c mη η= =  
MOEA/DD              max =300T , =5θ , =0.1T N , =0.9δ  
MaPSO                    max =300T , =3K , max =0.5θ  
KnEA                      max =300T , =0.5K , 
RVEA                     max =300T , =2α , 0.1rf =  

 
The general parameters of each algorithm are set as follows. M=3, N=200; M=5, N=300; 

M=7, N=300. All algorithms are independently run 30 times on each test function. 
Inverted generational distance (IGD) is employed in this work to evaluate the performance 

of all compared algorithms [35]. It is used as a metric to evaluate the performance of the 
algorithm as it provides a joint measure of the overall performance (convergence and diversity 
are included) of the population obtained. In the process of calculating the index, the number 
of reference points is 10,000. 
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4.2 Analysis of results 
Table 3-Table 5 records and analyzes the average results of all comparison algorithms in 

the WFG test function under the IGD index. 
 

Table 3.   IGD results on the 3-objective WFG Functions 
Function MaSCA-

KD 
NSGA-III MOEA/DD MAPSO KnEA RVEA 

WFG1 0.0859  0.2883  0.1206  0.8296  0.1469  0.1268 
WFG2 0.2815  0.3489  0.2933  0.6121  0.3178  0.3145 
WFG3 0.0738  0.0561  0.0891  0.3915 0.2182  0.0519 
WFG4 0.1636  0.1439 0.1512 0.8428 0.1511 0.1492 
WFG5 0.1676  0.1695 0.1739 0.3768 0.1742 0.1708 
WFG6 0.1872  0.1818 0.1961 0.2970 0.1817 0.1641 
WFG7 0.1468  0.1773 0.1485 0.3749 0.1799 0.1477 
WFG8 0.2618  0.3029 0.4255 0.6595 0.4736 0.3057 
WFG9 0.2080  0.2758 0.2861 0.3339 0.2924 0.2824 

Optimal 
rate 

66.67%  11.11% 0.00% 0.00% 0.00% 22.22% 

 

For the 3-objective WFG functions, MaSCA-KD reaches the optimal value on the 6 test 
functions, i.e., WFG1, WFG2, WFG5, WFG7-WFG9. The optimal rate of MaSCA-KD 
reaches 66.67%. NSGA-III obtains the best performance on WFG4, and RVEA is the best 
algorithm on WFG3 and WFG6. The optimal rates obtained by the MaSCA-KD, NSGA-III, 
MOEA/DD, MAPSO, KnEA and RVEA algorithms are 66.67%, 11.11%, 0, 0, 0, and 22.22%. 
Overall, MaSCA-KD is the best performing algorithm in terms of its probability of achieving 
optimal performance. 
 

Table 4.   IGD results on the 5-objective WFG Functions 
Function MaSCA-

KD 
NSGA-III MOEA/DD MAPSO KnEA RVEA 

WFG1 0.4969  0.5367 4.3426 0.6184 0.5345 1.7840 
WFG2 0.8124  0.8992 5.8929 4.4284 0.8622 1.5897 
WFG3 0.8099  0.4704 5.4327 0.8518 0.5398 0.4539 
WFG4 1.1964    1.3237 6.4498 1.3266 1.1477 1.1676 
WFG5 1.1965    1.3301 8.2129 1.2894 1.2379 1.1785 
WFG6 1.1354    1.3381 3.5797 1.2972 1.2362 1.1845 
WFG7 1.1434    1.3158 6.1295 1.3121 1.1931 1.1775 
WFG8 1.2383     1.3847 3.4435 1.3226 1.3466 1.2738 
WFG9 1.1796      1.2376 5.5684 1.2769 1.2940 1.1509 

Optimal 
rate 

55.56%   0.00% 0.00% 0.00% 11.11% 33.33% 

 
As shown in Table 4, for the 5-objective test function, MaSCA-KD obtains the best 

performance on WFG1-WFG2, WFG6-WFG8. The performance of NSGA-III, MOEA/DD 
and MAPSO are poor than that of other competitors. The optimal rate of MaSCA-KD is 
56.67%, and RVEA is a competitive algorithm whose optimal rate of MaSCA-KD is 33.33%. 
KnEA only achieved the optimal value of WFG4. The optimal rates obtained by the MaSCA-
KD, NSGA-III, MOEA/DD, MAPSO, KnEA and RVEA algorithms are 55.56%, 0, 0, 0, 
11.11%, and 33.33%. In the 5-objective test function, RVEA becomes more competitive, but 
A is still the best performing algorithm. 
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Table 5.   IGD results on the 7-objective WFG Functions 

Function MaSCA-
KD 

NSGA-III MOEA/DD MAPSO KnEA RVEA 

WFG1 0.8671     0.8734 9.5437 1.2959 1.0373 0.8981 
WFG2 1.8900   1.0414 9.3436 7.5562 1.8847 4.1476 
WFG3 0.9262      1.4316 1.2107 2.0279 1.0241 0.9646 
WFG4 3.1677     3.4788 9.0226 4.1858 3.1451 3.0288 
WFG5 3.0259    3.3470 12.9001 3.8838 3.3719 3.2672 
WFG6 3.1823      3.4298 14.9064 4.1827 3.5592 3.1280 
WFG7 3.0285      3.4111 11.5963 3.8063 3.1546 3.0430 
WFG8 3.2317     3.5560 9.3742 4.2838 3.5706 3.2491 
WFG9 3.2326     3.3110 9.4924 3.9084 3.4044 3.0248 

Optimal 
rate 

55.56%    11.11% 0.00% 0.00% 0.00% 33.33% 

 
As shown in Table 5, MaSCA-KD obtains the best performance on WFG1, WFG3, WFG5, 

WFG7 and WFG8 on the WFG series test functions for 7 objectives. The optimal performance 
of WFG2 is reflected in NSGA-III. The optimal rate of MaSCA-KD, NSGA-III, MOEA/DD, 
MAPSO, KnEA and RVEA is 55.56%, 11.11%, 0, 0, 0, 33.33%, respectively. The 
performance of Algorithm MaSCA-KD is still in the leading position among all the 
comparison algorithms. 

Therefore, in most of the test functions, MaSCA-KD can obtain the best performance, 
indicating that MaSCA-KD can obtain an approximate population with good convergence and 
diversity. 
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Fig. 3. The approximate front of MaSCA-KD, NSGA-III, MOEA/DD, MAPSO, KnEA, RVEA on 3-

objective WFG1 
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Fig. 4. The approximate front of MaSCA-KD, NSGA-III, MOEA/DD, MAPSO, KnEA, RVEA on 3-
objective WFG2 
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Fig. 5. The approximate front of MaSCA-KD, NSGA-III, MOEA/DD, MAPSO, KnEA, RVEA on 7-
objective WFG1 
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Fig. 6. The approximate front of MaSCA-KD, NSGA-III, MOEA/DD, MAPSO, KnEA, RVEA on 7-
objective WFG7 

 
Fig. 3- Fig. 6 show the plan views of candidate solution sets obtained by each comparison 

algorithm on some test functions, so as to observe the distribution of approximate PF in the 
objective space more intuitively. For WFG1 with a mixed PF, it can be seen from Fig. 5, both 
the convergence and diversity of MaSCA-KD get the best performance. NSGAIII did not 
converge to the complete PF; MOEA/DD and MAPSO did not get a solution set similar in 
shape to the PF, that is, did not find the true PF; the diversity of KnEA and RVEA is not as 
good as MaSCA-KD. When dealing with the discontinuity problem WFG2, it can be obtained 
by observing Fig. 4 that MAPSO and KnEA did not converge to the true PF shape, and in all 
comparison algorithms, MaSCA-KD can not only get an approximate frontier close to the 
frontier, but also form an even distribution in the objective space.  
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As shown in Fig. 5 and Fig. 6, the approximate PF obtained by MaSCA-KD is also better 
than other comparison algorithms for 7-objective WFG function. 

5. Conclusion 
When dealing with multi-objective optimization problems, the object space expands 

dramatically as the object dimension increases. Therefore, it is crucial to maintain the 
convergence and diversity balance of the Pareto solution set. In this paper, a knee-driven 
many-objective sine-cosine algorithm (MaSCA-KD) has been proposed. First of all, a Latin 
hypercube sampling strategy is adopted to generate a uniform initial population and fully 
search the objective space in the stage of initializing the population to increase the diversity of 
the population. Secondly, in order to increase the convergence pressure, special points are used 
for environmental selection design. Among them, the convergence point is used to increase 
the selection pressure of the environment, and the knee point has two functions, namely 
screening the global extreme value and giving priority to the candidate solution. After the 
convergence of the population is guaranteed, the diversity of the candidate solutions with the 
largest difference is improved during environment selection. The above strategies work at the 
same time, so that the convergence and diversity of the population reach an equilibrium state. 
Finally, compare the proposed algorithm with the excellent algorithms from this year. Through 
the simulation experiments on the 3-objective, 5- objective and 7-objective WFG series of test 
functions, the results show that MaSCA-KD can achieve the best performance on most 
functions in a total of 27 functions. In particular, the MaSCA-KD algorithm has a significant 
improvement in the balance of convergence and diversity compared with other similar 
algorithms. 

In further research work, testing problems with more objective will be considered. For 
complex PF, more suitable environmental selection mechanisms need to be designed, 
especially for irregular frontiers. In addition, we will use the designed algorithm in practical 
problems to increase the practicality of the algorithm. 
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