• 제목/요약/키워드: partitive division

검색결과 16건 처리시간 0.019초

자연수 나눗셈에 관한 비형식적 지식과 형식적 지식의 연결 방안 (The Connection between Informal Knowledge and Formal Knowledge on Division)

  • 이종욱
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제47권1호
    • /
    • pp.91-106
    • /
    • 2008
  • Interviews with 24 pupils in grade 1-2 were used to investigate awareness of the relation between situation and computation in simple quotitive and partitive division problems as informally experienced. Then it was suggested how to connect children's informal knowledge and formal knowledge of division. Most subjects counted cubes or made drawing, and related these methods to the situation described in the problems. In result, quotitive division was experienced as a dealing situation, where the number of items represented by the divisor was repeatedly taken from the whole number. And estimate-adjust was the most frequently displayed way of experiencing partitive division. Therefore, partitive division with its two measurement variables can be related to a measurement model. And children should be taught column algorithms for division with estimated-adjust which pupils used for partitive division problems.

  • PDF

분수 포함제와 제수의 역수 곱하기 알고리즘의 연결성 (Quotitive Division and Invert and Multiply Algorithm for Fraction Division)

  • 임재훈
    • 한국초등수학교육학회지
    • /
    • 제20권4호
    • /
    • pp.521-539
    • /
    • 2016
  • 피제수와 제수가 분수인 나눗셈에서, 포함제는 공통분모 알고리즘과 등분제는 제수의 역수 곱하기 알고리즘과 대응한다고 여겨져 왔다. 분수 나눗셈 학습 지도에서 이와 같은 이분법을 넘어서려는 시도가 있어 왔다. 이러한 시도에서 포함제와 제수의 역수 곱하기 알고리즘을 연결하는 방법으로는, 공통분모 알고리즘을 이용하는 방법, $1{\div}$(제수)를 매개로 하는 방법, 제수 쪽의 양을 1이라고 가정하는 방법이 있다. 기존의 방법들에서 포함제와 제수의 역수 곱하기 알고리즘의 관련은 중간까지만 유지되거나 제수의 역수 곱하기 알고리즘이라는 최종 결과만 등분제와 공유한다. 이 논문에서는 기존 방법의 한계를 넘어, 포함제와 제수의 역수 곱하기 알고리즘의 연결성을 새로운 관점에서 심층 논의한다. 포함제를 측정접근법과 동형접근법으로 해결하는 과정에서 등분제에서와 동일한 수식 변형 과정을 거쳐 제수의 역수 곱하기 알고리즘이 유도될 수 있다. 이 연구의 결과는, 분수 나눗셈 계산법 학습 지도에 관한 이론적 논의의 장을 확장함과 더불어, 포함제와 등분제를 아우르는 분수 나눗셈의 통합 계산법 학습 지도 프로그램 개발에 국소 이론으로 사용될 수 있다.

포함제와 등분제에 따른 나눗셈 의미에 대한 이해 조사 (Investigation on Awareness of Meanings of Division: Quotitive Division and Partitive Division)

  • 장혜원
    • 대한수학교육학회지:학교수학
    • /
    • 제12권4호
    • /
    • pp.585-604
    • /
    • 2010
  • 본 연구에서는 나눗셈의 도입시 이용되는 두 가지 의미인 포함제와 등분제에 대한 초등학생 및 예비초등교사의 이해에 대해 조사하였다. 역대 교육과정 및 그에 따른 교과서에서 나눗셈을 도입하는 상황으로 양자를 다루어왔지만 그 구별을 어느 정도로 명시적으로 다루었는가 하는 것은 시기에 따라 변화되어 왔다. 특히 현행 2007년 개정교육과정에 따른 교과서에서는 두 가지 의미에 따라 나눗셈을 별도로 정의하고 몫의 의미에 대해서도 명시적인 언어적 설명을 추가하는 등 이전과 다른 특징을 보여준다. 계산 기능뿐만 아니라 연산의 의미 이해를 강조하는 수학교육 경향의 한 단면으로 간주되는 이러한 의도가 학생들에게 얼마만큼 수용되고 있는지 알아보기 위해 초등학교 3학년 학생을 대상으로 질문지를 적용하여 그 결과를 분석하고, 또한 두 상황의 명시적인 구별 가능성을 타진하기 위한 기초 자료로서 예비초등교사의 이해도를 조사하였다. 결과적으로 현행 교과서의 접근 방식에 대한 재고의 필요성을 확인하고, 나눗셈의 지도를 위한 몇 가지 교수학적 시사점을 도출하였다.

  • PDF

중학교 수학 교사들의 분수나눗셈에 대한 이해 (Middle School Mathematics Teachers' Understanding of Division by Fractions)

  • 김영옥
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제17권2호
    • /
    • pp.147-162
    • /
    • 2007
  • 본 논문은 교수를 위한 중학교 수학교사들의 수학적 지식을 조사한 저자의 학위논문의 일부분으로써, 19명의 한국 및 중국 중학교 수학교사들의 분수 나눗셈(division by fractions)에 대한 개념적 실생활 모델을 조사, 분석하였다. 분수 나눗셈에 대한 이론적 배경을 제공함과 동시에, 실제 현장 교사들이 가지고 있는 분수 나눗셈에 대한 개념적 이해를 조사, 분석함으로써 분수 나눗셈을 효과적으로 가르치기 위한 교사 지식의 구체적 예들을 제공하고 있다. 본 연구에서는, 연구에 참가한 교사들 대부분이 분수 나눗셈을 "역수 곱하기(invert and multiply)"와 같은 전통적 알고리즘에 기초하여 이해하고 있었으며, 분수 나눗셈의 의미를 실생활 모델로 나타내는 교수과제를 성공적으로 수행한 교사는 단 두 명에 뿐이었다. 이러한 현상은 그 교사들 대부분이 가지고 있는 범자연수 나눗셈 모델이 분할 모델 (partitive model)로 제한되어 있기 때문이었다. 하지만, 또 다른 흥미로운 연구 결과는, 교사가 분할모델 만을 가지고 있더라도, 그 모델의 개념적 구조(conceptual structure)를 깊이 이해하고 있을 때는, 그 기본적 개념 구조를 변형하여 분수 나눗셈의 실생활 모델을 응용해 내는 사고의 융통성을 보였다. 본 논문에서는 이러한 교사들의 성공적 사례뿐만 아니라, 주어진 교수 과제를 수행하는데 실패한 교사들의 인터뷰결과들도 분석, 해석하여 제공하였다.

  • PDF

교사들의 등분제 분수 나눗셈 지식에 관한 연구 (Exploring Teachers' Knowledge of Partitive Fraction Division)

  • 이수진
    • 대한수학교육학회지:학교수학
    • /
    • 제14권1호
    • /
    • pp.45-64
    • /
    • 2012
  • 본 정성 연구에서는 교사들의 등분제 분수 나눗셈에 대한 지식을 분석하였다. 자료 수집은 13명의 교사들이 참여한 분수, 소수, 비례 등에 대한 주제를 다룬 40시간의 교사교육 프로그램으로부터 수집되어 일부분이 활용되었으며, 교사들의 등분제 분수 나눗셈 지식을 세밀하게 분석하기 위해 두 가지 지식 요소들 (단위에 대한 지식, 분할 조작)을 분석틀로 사용하였다. 그 결과, 제수와 피제수가 서로소인 등분제 나눗셈 문제 상황을 다루는 능력이 두 지식 요소의 사용여부와 수준에 따라 다르게 나타났다. 두 단계의 단위 구조만을 가지고 추론한 교사의 경우 한 사람의 몫을 주어진 단위로 정확하게 나타낼 수 없었다는 점에서 제한점을 보였으며, 세 단계의 단위 구조를 가지고 추론한 교사는 다양한 분할 조작과 참조 단위의 활용으로 보다 유연하게 문제 상황에 대처할 수 있음을 보여주었다.

  • PDF

한 초등학교 2학년 아동의 곱셈과 나눗셈 해결 전략에 관한 사례 연구 (A Case Study on Solution Strategies for Multiplication and Division of a Second Grader)

  • 이종욱
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제46권2호
    • /
    • pp.155-171
    • /
    • 2007
  • One second grader, Junsu, was observed 4 times before and after formal multiplication lesson in Grade 2. This study describes how solution strategies in multiplication problems develop over time and investigates awareness of the relation between situation and computation in simple measurement and partitive division problems as informally experienced. It was found that Junsu used additive calculation for small-number multiplication problems but could not solve large-number multiplication problems and that he did not have concept of mathematical terms at first interview stage. After formal teaching, Junsu learned a variety of multiplication solution strategies and transferred from additive calculation to multiplicative calculation. The cognitive processing load of each strategy was gradually reduced. Junsu experienced measurement division as a dealing strategy and partitive division as a estimate-adjust strategy dealing more than one object in the first round.

  • PDF

포함제와 등분제 맥락에서 자연수 나눗셈 계산법 지도의 문제 (On Teaching Algorithm for Whole-number Division in Measurement and Partition Contexts: Analysis of Korean Math Textbooks and Teachers' Guidebooks)

  • 임재훈
    • 한국초등수학교육학회지
    • /
    • 제17권3호
    • /
    • pp.395-411
    • /
    • 2013
  • 나눗셈 맥락에는 크게 포함제 맥락과 등분제 맥락이 있다. 아동들은 학습을 통하여 포함제 맥락과 등분제 맥락에서 자연수 나눗셈 세로 형식 계산법의 원리를 점진적으로 이해해 갈 것으로 기대된다. 수학 교과서와 교사용 지도서는 아동들의 자연수 나눗셈 계산법의 종합적 이해를 지원할 수 있도록 구성되는 것이 바람직하다. 2007 교육과정에 따른 교과서와 교사용 지도서의 자연수 나눗셈 관련 내용을 분석한 결과, 교과서와 교사용 지도서는 편의적으로 포함제 맥락과 등분제 맥락을 사용하고 있었다. 이와 같은 편의적인 사용은 포함제와 등분제 맥락에서 자연수 나눗셈 계산법의 종합적 이해를 어렵게 할 수 있다. 이 논문에서는 교과서와 지도서 분석 결과를 바탕으로 포함제와 등분제 맥락에서 자연수 나눗셈 계산법의 종합적 이해를 도모하는 데 필요한 제언을 제시하였다.

  • PDF

카테시안 곱의 역 맥락에서 분수의 나눗셈 (Division of Fractions in the Contexts of the Inverse of a Cartesian Product)

  • 임재훈
    • 대한수학교육학회지:학교수학
    • /
    • 제9권1호
    • /
    • pp.13-28
    • /
    • 2007
  • 학생들이 분수 나눗셈을 이해하기 어려워하는 이유 중 하나는 분수 나눗셈의 구체화가 어렵고 불충분하기 때문이다. 측정 맥락과 분할 맥락의 구체화에 비해 곱과 인수 맥락에서의 구체화는 상대적으로 부족한 실정이다. 이 연구에서는 카테시안 곱의 역 맥락에서 분수 나눗셈 알고리즘을 구체화하였다. 카테시안 곱의 역 맥락에서 이루어져 있는 기존의 분수 나눗셈 구체화의 한계를 논의하고, 세로의 길이를 고정하고 가로의 길이를 1 또는 자연수로 만드는 방법과 넓이가 1인 직사각형을 이용하는 방법으로 분수 나눗셈을 제시하였다. 이와 같은 방법은 제수의 역수의 의미, 제수를 1로 만드는 것의 중요성, 기존 학습 내용과의 연결성, 다양한 접근 가능성 면에서 장점이 있다. 이와 같은 장점을 살려 카테시안 곱의 역 맥락에서 분수 나눗셈 알고리즘을 도입하는 것을 고려할 수 있다.

  • PDF

맥락화를 통한 분수의 곱셈과 나눗셈 지도 (Teaching Multiplication & Division of Fractions through Contextualization)

  • 김명운;장경윤
    • 대한수학교육학회지:학교수학
    • /
    • 제11권4호
    • /
    • pp.685-706
    • /
    • 2009
  • 이 연구는 분수의 곱셈 나눗셈에 관련한 교수-학습을 의미 있게 도울 수 있는 맥락화가 왜 필요하며, 어떻게 가능한지, 또한 효과적인 맥락화의 활용 방안은 무엇인지를 탐구하는 것을 목적으로 한다. 이를 위해 자연수에 대하여 분수의 곱셈 나눗셈 상황의 차이는 무엇인지를 살펴보고, 그 차이에 따라 분수의 곱셈에서는 승수인 연산자의 역할을 이해할 수 이는 맥락을 설정하여, 단위의 변화에 대한 인식을 하도록 하였다. 분수의 나눗셈에서 포함제는 그 몫이 이산량인 경우이면 남은 양이 생길 수 있고, 연속량인 경우에는 분수로 그 몫을 표현해야 하는 맥락으로 구분지었다. 그리고 등분제의 맥락은 자연수의 등분제의 맥락과 연결시켜 새롭게 제시하여, 자연수의 나눗셈에서 분수의 나눗셈으로 형식화되는 3단계의 효과적인 학습 방법을 제안하였다. 이로써 교사와 학생들의 분수의 곱셈과 나눗셈의 교수-학습 과정에 있어서 유의미한 알고리즘의 습득에 도움을 줄 수 있을 것으로 기대한다.

  • PDF

문제 상황과 연결된 분수 나눗셈의 교과서 내용 구성 방안 (A proposal to the construction of textbook contents of fraction division connected to problem context)

  • 신준식
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제52권2호
    • /
    • pp.217-230
    • /
    • 2013
  • This study attempts to propose the construction of textbook contents of fraction division and to suggest a method to strengthen the connection among problem context, manipulation activities and symbols by proposing an algorithm of dividing fractions based on problem contexts. As showing the suitable algorithm to problem context, it is able to understand meaningfully that the algorithm of fractions division is that of multiplication of a reciprocal. It also shows how to deal with remainder in the division of fractions. The results of this study are expected to make a meaningful contribution to textbook development for primary students.