• Title/Summary/Keyword: p.p.-rings

Search Result 332, Processing Time 0.022 seconds

ON ϕ-PSEUDO ALMOST VALUATION RINGS

  • Esmaeelnezhad, Afsaneh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.935-946
    • /
    • 2015
  • The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.

RESOLUTIONS AND DIMENSIONS OF RELATIVE INJECTIVE MODULES AND RELATIVE FLAT MODULES

  • Zeng, Yuedi;Chen, Jianlong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.11-24
    • /
    • 2013
  • Let m and n be fixed positive integers and M a right R-module. Recall that M is said to be ($m$, $n$)-injective if $Ext^1$(P, M) = 0 for any ($m$, $n$)-presented right R-module P; M is said to be ($m$, $n$)-flat if $Tor_1$(N, P) = 0 for any ($m$, $n$)-presented left R-module P. In terms of some derived functors, relative injective or relative flat resolutions and dimensions are investigated. As applications, some new characterizations of von Neumann regular rings and p.p. rings are given.

GRADED UNIFORMLY pr-IDEALS

  • Abu-Dawwas, Rashid;Refai, Mashhoor
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.195-204
    • /
    • 2021
  • Let R be a G-graded commutative ring with a nonzero unity and P be a proper graded ideal of R. Then P is said to be a graded uniformly pr-ideal of R if there exists n ∈ ℕ such that whenever a, b ∈ h(R) with ab ∈ P and Ann(a) = {0}, then bn ∈ P. The smallest such n is called the order of P and is denoted by ordR(P). In this article, we study the characterizations on this new class of graded ideals, and investigate the behaviour of graded uniformly pr-ideals in graded factor rings and in direct product of graded rings.

ON ANNIHILATOR IDEALS OF A NEARRING OF SKEW POLYNOMIALS OVER A RING

  • Hashemi, Ebrahim
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1267-1279
    • /
    • 2007
  • For a ring endomorphism ${\alpha}$ and an ${\alpha}-derivation\;{\delta}$ of a ring R, we study relation between the set of annihilators in R and the set of annihilators in nearring $R[x;{\alpha},{\delta}]\;and\;R_0[[x;{\alpha}]]$. Also we extend results of Armendariz on the Baer and p.p. conditions in a polynomial ring to certain analogous annihilator conditions in a nearring of skew polynomials. These results are somewhat surprising since, in contrast to the skew polynomial ring and skew power series case, the nearring of skew polynomials and skew power series have substitution for its "multiplication" operation.

GRADED PSEUDO-VALUATION RINGS

  • Fatima-Zahra Guissi;Hwankoo Kim;Najib Mahdou
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.5
    • /
    • pp.953-973
    • /
    • 2024
  • Let R = ⊕α∈Γ Rα be a commutative ring graded by an arbitrary torsionless monoid Γ. A homogeneous prime ideal P of R is said to be strongly homogeneous prime if aP and bR are comparable for any homogeneous elements a, b of R. We will say that R is a graded pseudo-valuation ring (gr-PVR for short) if every homogeneous prime ideal of R is strongly homogeneous prime. In this paper, we introduce and study the graded version of the pseudo-valuation rings which is a generalization of the gr-pseudo-valuation domains in the context of arbitrary Γ-graded rings (with zero-divisors). We then study the possible transfer of this property to the graded trivial ring extension and the graded amalgamation. Our goal is to provide examples of new classes of Γ-graded rings that satisfy the above mentioned property.

Two More Radicals for Right Near-Rings: The Right Jacobson Radicals of Type-1 and 2

  • Rao, Ravi Srinivasa;Prasad, K. Siva
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.4
    • /
    • pp.603-613
    • /
    • 2006
  • Near-rings considered are right near-rings and R is a near-ring. $J_0^r(R)$, the right Jacobson radical of R of type-0, was introduced and studied by the present authors. In this paper $J_1^r(R)$ and $J_2^r(R)$, the right Jacobson radicals of R of type-1 and type-2 are introduced. It is proved that both $J_1^r$ and $J_2^r$ are radicals for near-rings and $J_0^r(R){\subseteq}J_1^r(R){\subseteq}J_2^r(R)$. Unlike the left Jacobson radical classes, the right Jacobson radical class of type-2 contains $M_0(G)$ for many of the finite groups G. Depending on the structure of G, $M_0(G)$ belongs to different right Jacobson radical classes of near-rings. Also unlike left Jacobson-type radicals, the constant part of R is contained in every right 1-modular (2-modular) right ideal of R. For any family of near-rings $R_i$, $i{\in}I$, $J_{\nu}^r({\oplus}_{i{\in}I}R_i)={\oplus}_{i{\in}I}J_{\nu}^r(R_i)$, ${\nu}{\in}\{1,2\}$. Moreover, under certain conditions, for an invariant subnear-ring S of a d.g. near-ring R it is shown that $J_2^r(S)=S{\cap}J_2^r(R)$.

  • PDF