DOI QR코드

DOI QR Code

QUADRATIC RESIDUE CODES OVER p-ADIC INTEGERS AND THEIR PROJECTIONS TO INTEGERS MODULO pe

  • Received : 2015.03.06
  • Accepted : 2015.03.15
  • Published : 2015.03.30

Abstract

We give idempotent generators for quadratic residue codes over p-adic integers and over the rings $\mathbb{Z}_{p^e}$.

Keywords

References

  1. A.R. Calderbank and N.J.A. Sloane, Modular and p-adic and cyclic codes, DCC, 6 (1995), 21-35.
  2. M.H Chiu, S. S.-T. Yau and Y. Yu, ${\mathbb{Z}}_8$-cyclic codes and quadratic residue codes, Advances in Algebra 25 (2000), 12-33.
  3. S.T. Dougherty, S.Y. Kim and Y.H. Park, Lifted codes and their weight enumerators, Discrite Math. 305 (2005), 123-135. https://doi.org/10.1016/j.disc.2005.08.004
  4. S.T. Dougherty and Y.H. Park, Codes over the p-adic integers, Des. Codes. Cryptogr. 39 (2006), 65-80. https://doi.org/10.1007/s10623-005-2542-x
  5. W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge, 2003.
  6. S.J. Kim, Quadratic residue codes over ${\mathbb{Z}}_{16}$, Kangweon-Kyungki Math. J. 11 (2003), 57-64.
  7. S.J. Kim, Generator polynomials of the p-adic quadratic residue codes, Kangweon-Kyungki Math. J. 13 (2005), 103-112.
  8. F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
  9. B.R. McDonald, Finite rings with identity, Dekker, New York, 1974.
  10. K. Nagata, F. Nemenzo and H. Wada, On self-dual codes over ${\mathbb{Z}}_{16}$, Lecture Notes in Computer Science 5527, 107-116, 2009.
  11. G. Nebe, E. Rains and N.J.A. Sloane, Self-dual codes and invariant theory, Springer-Verlag, 2006.
  12. Y.H. Park, Modular independence and generator matrices for codes over ${\mathbb{Z}}_m$, Des. Codes. Crypt 50 (2009), 147-162. https://doi.org/10.1007/s10623-008-9220-8
  13. B. Taeri, Quadratic residue codes over ${\mathbb{Z}}_9$, J. Korean Math Soc. 46 (2009), 13-30. https://doi.org/10.4134/JKMS.2009.46.1.013

Cited by

  1. QUADRATIC RESIDUE CODES OVER GALOIS RINGS vol.24, pp.3, 2016, https://doi.org/10.11568/kjm.2016.24.3.567