• 제목/요약/키워드: p-Bernoulli numbers

검색결과 36건 처리시간 0.023초

A NUMERICAL INVESTIGATION ON THE STRUCTURE OF THE ROOT OF THE (p, q)-ANALOGUE OF BERNOULLI POLYNOMIALS

  • Ryoo, Cheon Seoung
    • Journal of applied mathematics & informatics
    • /
    • 제35권5_6호
    • /
    • pp.587-597
    • /
    • 2017
  • In this paper we define the (p, q)-analogue of Bernoulli numbers and polynomials by generalizing the Bernoulli numbers and polynomials, Carlitz's type q-Bernoulli numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with (p, q)-analogue of Bernoulli numbers and polynomials. Finally, we investigate the zeros of the (p, q)-analogue of Bernoulli polynomials by using computer.

ON BERNOULLI NUMBERS

  • Kim, Min-Soo;Son, Jin-Woo
    • 대한수학회지
    • /
    • 제37권3호
    • /
    • pp.391-410
    • /
    • 2000
  • In the complex case, we construct a q-analogue of the Riemann zeta function q(s) and a q-analogue of the Dirichlet L-function L(s,X), which interpolate the 1-analogue Bernoulli numbers. Using the properties of p-adic integrals and measures, we show that Kummer type congruences for the q-analogue Bernoulli numbers are the generalizations of the usual Kummer congruences for the ordinary Bernoulli numbers. We also construct a q0analogue of the p-adic L-function Lp(s, X;q) which interpolates the q-analogue Bernoulli numbers at non positive integers.

  • PDF

APPLICATIONS OF CLASS NUMBERS AND BERNOULLI NUMBERS TO HARMONIC TYPE SUMS

  • Goral, Haydar;Sertbas, Doga Can
    • 대한수학회보
    • /
    • 제58권6호
    • /
    • pp.1463-1481
    • /
    • 2021
  • Divisibility properties of harmonic numbers by a prime number p have been a recurrent topic. However, finding the exact p-adic orders of them is not easy. Using class numbers of number fields and Bernoulli numbers, we compute the exact p-adic orders of harmonic type sums. Moreover, we obtain an asymptotic formula for generalized harmonic numbers whose p-adic orders are exactly one.

IDENTITIES INVOLVING THE DEGENERATE GENERALIZED (p, q)-POLY-BERNOULLI NUMBERS AND POLYNOMIALS

  • JUNG, N.S.
    • Journal of applied mathematics & informatics
    • /
    • 제38권5_6호
    • /
    • pp.601-609
    • /
    • 2020
  • In this paper, we introduce degenerate generalized poly-Bernoulli numbers and polynomials with (p, q)-logarithm function. We find some identities that are concerned with the Stirling numbers of second kind and derive symmetric identities by using generalized falling factorial sum.

A q-ANALOGUE OF $\omega-BERNOULLI$ NUMBERS AND THEIR APPLICATIONS

  • Son, Jin-Woo;Jang, Douk-Soo
    • 대한수학회보
    • /
    • 제38권2호
    • /
    • pp.399-412
    • /
    • 2001
  • In this paper, we consider that the q-analogue of w$\omega-Bernoulli numbers\; B_i(\omega, q)$. And we calculate the sums of products of two q-analogue of $\omega-Bernoulli numbers B_i(\omega, q)$ in complex cases. From this result, we obtain the Euler type formulas of the Carlitz´s q-Bernoulli numbers $\beta_i(q)$ and q-Bernoulli numbers $B_i(q)$. And we also calculate the p-adic Stirling type series by the definition of $B_i(\omega, q)$ in p-adic cases.

  • PDF

ON THE ANALOGS OF BERNOULLI AND EULER NUMBERS, RELATED IDENTITIES AND ZETA AND L-FUNCTIONS

  • Kim, Tae-Kyun;Rim, Seog-Hoon;Simsek, Yilmaz;Kim, Dae-Yeoul
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.435-453
    • /
    • 2008
  • In this paper, by using q-deformed bosonic p-adic integral, we give $\lambda$-Bernoulli numbers and polynomials, we prove Witt's type formula of $\lambda$-Bernoulli polynomials and Gauss multiplicative formula for $\lambda$-Bernoulli polynomials. By using derivative operator to the generating functions of $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, we give Hurwitz type $\lambda$-zeta functions and Dirichlet's type $\lambda$-L-functions; which are interpolated $\lambda$-Bernoulli polynomials and generalized $\lambda$-Bernoulli numbers, respectively. We give generating function of $\lambda$-Bernoulli numbers with order r. By using Mellin transforms to their function, we prove relations between multiply zeta function and $\lambda$-Bernoulli polynomials and ordinary Bernoulli numbers of order r and $\lambda$-Bernoulli numbers, respectively. We also study on $\lambda$-Bernoulli numbers and polynomials in the space of locally constant. Moreover, we define $\lambda$-partial zeta function and interpolation function.

A NOTE ON THE WEIGHTED q-BERNOULLI NUMBERS AND THE WEIGHTED q-BERNSTEIN POLYNOMIALS

  • Dolgy, D.V.;Kim, T.
    • 호남수학학술지
    • /
    • 제33권4호
    • /
    • pp.519-527
    • /
    • 2011
  • Recently, the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$ are introduced in [3]: In this paper we give some interesting p-adic integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials related to the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$. From those integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials, we can derive some identities on the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$.

ON p-ADIC INTEGRAL FOR GENERALIZED DEGENERATE HERMITE-BERNOULLI POLYNOMIALS ATTACHED TO χ OF HIGHER ORDER

  • Khan, Waseem Ahmad;Haroon, Hiba
    • 호남수학학술지
    • /
    • 제41권1호
    • /
    • pp.117-133
    • /
    • 2019
  • In the current investigation, we obtain the generating function for Hermite-based degenerate Bernoulli polynomials attached to ${\chi}$ of higher order using p-adic methods over the ring of integers. Useful identities, formulae and relations with well known families of polynomials and numbers including the Bernoulli numbers, Daehee numbers and the Stirling numbers are established. We also give identities of symmetry and additive property for Hermite-based generalized degenerate Bernoulli polynomials attached to ${\chi}$ of higher order. Results are supported by remarks and corollaries.

ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS

  • Lee, Chae-Jang
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The purpose of this paper is to define generalized twisted q-Bernoulli numbers by using p-adic q-integrals. Furthermore, we construct a q-analogue of the p-adic generalized twisted L-functions which interpolate generalized twisted q-Bernoulli numbers. This is the generalization of Kim's h-extension of p-adic q-L-function which was constructed in [5] and is a partial answer for the open question which was remained in [3].