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ON BERNOULLI NUMBERS
MIN-S00 KIM AND JIN-WOO SON

ABSTRACT. In the complex case, we construct a g-analogue of the
Riemann zeta function {4(s) and a g-analogue of the Dirichlet L-
function Lg4(s,X), which interpolate the g-analogue Bernoulli num-
bers. Using the properties of p-adic integrals and measures, we show
that Kummer type congruences for the g-analogue Bernoulli num-
bers are the generalizations of the usual Kummer congruences for
the ordinary Bernoulli numbers. We also construct a g-analogue of
the p-adic L-function Lp(s, x; g) which interpolates the g-analogue
Bernoulli numbers at non positive integers.

0. Introduction

Throughout this paper p will denote a prime number, Z;, the ring
of p-adic integer, Q, the field of fractions of Z,, and C, the p-adic
completion of the algebraic closure @p. Let v, be the p-adic valuation
of C, normalized so that |p|, = p~%»(") = p~1. We denote by R>q the
set consisting of all non-negative real numbers and by Z the ring of
integers and by Z>¢ the set of non-negative integers.

The Bernoulli numbers By, are defined by e,t—_l =Y rs Bk%, where
the symbol By is interpreted to mean that B* must be replaced by By
when we expand the one on the left. This relation can also be written
as e(BtDt _ Bt — ¢ or, equating the same powers of ¢, as

1, ifk=1;

= B+ 1)f - By =
Bo=1, (B+1)"-Bi {Q if k> 1.
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The Bernoulli numbers now may be computed recursively. One finds
that B, = —%,BQ = %,Bg =0,B4 = —3-1-6,35 = 0,Bg = 4—12~, etc.
The Bernoulli numbers are rational numbers whose denominators are
known by the theorem of von-Staudt and Clausen. In particular, if
p > 3 the numbers By, By, Bs, - - - , Bp_3 are p-integral. Also, Kummer
proved the important congruences )

Bm _ Bn
—=—- (mod p)

for positive even integers m,n such that m =n # 0 (mod p — 1) and
p > 3 (cf. [1], [9, p. 61 Corollary 5.14]). This congruence is cornerstone
of the theory of p-adic L-functions. More general version of these
congruences are given in the theorem 2 below.

The g-analogue Bernoulli numbers B,,(q) is defined in [7] by

00

t tm
EEiTi = Z Bn(Q)E

n=0
for ¢ € Ty (see 2). This relation can be determined inductively by

_ n R ifn=1;
Bo=0, ¢B+1)" 5= { 0, ifn>1,
with the usual convention of replacing B"(q) by B,. And using the
p-adic invariant measure on the p-adic integers, he found new relations
for g-analogue Bernoulli numbers.

In section 1, we first give some properties of the ordinary Bernoulli
numbers. In section 2, we shall define the generalized g-analogue
Bernoulli numbers B, ,(¢) for any Dirichlet character x, and we con-
struct a g-analogue of the Riemann zeta function (4(s) and the Dirichlet
L-function L4(s, x). In the last section, we prove that Kummer type
congruences for the ¢g-analogue Bernoulli numbers, which are general-
izations of the usual Kummer congruences. By using this congruence,
we shall construct a p-adic interpolation function of the g-analogue
Bernoulli numbers.
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1. Ordinary and generalized Bernuolli numbers, and p-adic
L-function

Let p be a prime number and let Q, be the field of p-adic numbers,
that is, the completion of the field of rational numbers Q with respect
to the p-adic metric, given by the p-adic norm

1p : Q= Rxo,

F 0, if 2 =0,

where v,(z) = o if x = p*2,(p,m) = (p,n) = 1, m,n € Z. The
function | - |, is multiplicative since v,(a1as) = vp(ay) + vp(az), and
satisfies the non-Archimedean property |z + y|, < max(|z|p, |ylp). If
a,b € Qp, we write a = b (mod p) if |a — bl, < p~Y, or equivalently,
(a—b)/pN € Z,, that is, if the first nonzero digit in the p-adic expansion
of a — b occurs no sooner than the p™-place. In Qp, it is not hard to see
that all discs of finite radius are compact. Each compact neighborhood
a+pNZ, in Q, is both open and closed, where a + pNZ, = {z € Z,, |
z =a (mod pM)}, 0 < a < p" — 1. Let d be a fixed positive integer
and p be a fixed odd prime number. We set

—1; N
X =limz/dp"Z,
N
(1.2) X*= |J (a+dpZy),

O0<a<dp
(a,p)=1

a+dpNZ,={z € X |z =a (mod dp™)},

where 0 < a < dp" — 1. In special case if d = 1, then X = Z, and
X* = Z;. The set of invertible elements in the ring Zj, is Zy, = Zp\ pZy.

We shall now introduce definitions of the p-adic distribution and the
p-adic measure (see [3], [5]).

A p-adic distribution p on X means that if U C X is the dis-
joint union of compact-open sets U, Us, -+« , Uy, then p(U) = pu(Ur) +
p(U2)+- -+ p(Uy). An Cp-valued measure p on X is a finitely additive
bounded map from the set of compact-open U C X to C,.
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Now, we give the key example of the p-adic distribution. The p-adic
Haar distribution yg is defined by

1
(1.3) pola+7"2;) 1= .

This extends to the unique measure (up to a constant multiple) on Z,.
It suffices to check that

p—1
> wola+bp" +pN 1 Zp) = po(a+pNZp).
b=0

We denote by UD(Z,,C,) the Cp-Banach algebra of all uniformly
differentiable functions f : Z, — C, under the usual pointwise opera-
tions and valuation V where V(f) = min{v(f), R(f)} with

R(f) = inf {vp(f_(fxl:_;‘(y_)>

xayezp’m¢yezp},

where v(f) = infzez, vp(f(x)) (see [10]).

For f € UD(Z,,C,), we have an integral Ip(f) with respect to the
invariant measure pg :

pV -1

()= [ 1@ duo(e) = Jim 3 f@ola+ V)
P a=0

LEMMA 1. For f € UD(Z,,C,), we have

Io(frt1) = Io(fa) + f'(n)

where f,(z) = f(z +n), n € Z>o. In particular,

Ip(f1) = Io(f) + f'(0).
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Proof. The proof is clear. a
If f/ =0 on Z,, then the integral Io(f) is invariant with respect to
shifts, i.e.,

/ f( +n) duo(z) = / §(@) dpo(a),
Zp Zp

where n € Zxo.

LEMMA 2. (Witt’s formula) For n € Z>o, we have

B, = / 2" duo (@),
Zp

where po(z +pNZ,) = ;%v-

Proof. This follows easily from Lemma 1. O

Let Zj, be the group of p-adic units, and let 1+ pZ, is the subgroup
of Z} consisting of all elements of the form 1+pa, a € Zj. Let C be the
cyclic group of order p — 1 consisting of (p — 1)-th roots of unity in Q,.
Each z in Z} can be uniquely written in the form z = w(z)(z), where
w(z) and (z) denote the projections of z on C and 14-pZ,, respectively.

We see easily that if p > 2, then
(14)  w(@)= lim z¢" and (z)P"! =1+ pgs, Vg € Zp.

n—o0

Hence, we can deduce from (1.4) that for any z € Z,

w(z) = z(l +pgz)TF, Vg € Zyp.

In particular,

T

> a™(1+pg)Tr =

=1

0, fp—1tm;
pn—-l(p - 1)7 if p- llma
where )" means to take the sum over all integers prime to p in given

ranges.
We now prove the following general congruence:



396 Min-Soo Kim and Jin-Woo Son

PROPOSITION 1. For any prime p > 5 and 1 > 1, we have

i(s — 1)

1 .
Bip-1) = 1= —i(l—ap)+=—

1
(Bz(p_l) + » +1- 2ap> (mod p?),

where o, = (1+pBp_1)/p.

Proof. From Lemma 2 with n = i(p—1),i > 1 and Z; = Z, \ pZ,,
we obtain

— pilp-1)-1yp. = — i(p-1)
(=P DBy = Jim Z 2

= / £ P~ Ddpo(z).
P

Let p be a prime with p > 5,7 > 1. Then by the von Staudt-Clausen
theorem, pB;(,—1) € Zp, and we find clearly that

Bipn = [ ¢ duo(a) (mod 5°).

P

Now, we put the Fermat quotient g, by zP~! = 1 + pq, for any integer
z € Zy. Then for any z € Zg, we have

i(i—1)
2
By using this congruence, we show that

/ 2P Ddpo ()
r4

. -1
= | dpo(z)+ip / qmduo(x)+ 2 )2 /Z g2dpo(e) (mod p°)
z; z >

'Y =1+ ipg, + p’q; (mod p?).

4

1 p-l_ 1
=1-- +1p/ T duo(z)
p . P

L [ dnte) (moa 57

1 i(i — 1)
El—;—z(l-—a,,)—i— 5

1
<B2(p—1) + ; +1- 2ap) (mod pa),
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where a, = (1 + pB,_1)/p. O
On the other hand, let Bi(z) be the Bernoulli polynomials de-
fined by the power series etfitl = Yoo Bk(m)%. Then it is clear

that the Bernoulli numbers are constant term of the Bernoulli poly-
nomials, that is, Bx = Bi(0). We can easily find that the relation

By (z) = Zf:o (’;)Bimk_i = Zf:o (?)Bk_izi. It is known that for any
rational integer n > 1 and £ > 0,

(1.5) Bi(z) = nk—lgBk(””:’) .

=0

The above Bernoulli polynomials are closely related to the p-adic dis-
tributions.

Let f : Z — C be a function with period d, the positive integer, i.e.,
f(G) = f(k) for j = k (mod d). The generalized Bernoulli numbers
B, s, m > 0 is defined by

aty oo m
(19) > L= B

0<a<d m=0

Then By, s = d™! Zi;é f(@)Bp (%) , where B () is the Bernoulli
polynomials.
For k € Z>0, pp,k (cf. [5]) is defined by

- a
(L7) i x(a+ dpNZp) = (dp™)* 1Bk(%ﬁ> .

Then we can show that up , extends uniquely to the distribution on
X.

Let f = x be a primitive Dirichlet character with the conductor
d. In the p-adic case, the generalized Bernoulli numbers B,, , can be
represented by the integral form as follow:

LEMMA 3. For a Dirichlet character x of conductor d, we have the
integral representations

(1) [x x(z)dupx(x) = Br,y;
) Jox x() dupi(z) = x(P)P* ' Brx.
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In particular,
dp N_1
Bk,x - Nl 1—r)noo pN Z
Proof. The proof is clear.

We rewrite the generalized Bernoulli numbers as integral forms

dp™ -1

Bix = N—)oodp_N > x(a)a* —/ x(z)z" dpo(z),
a=0

where po(a + dpNZ,) = d—;n
Therefore we obtain the following:

LEMMA 4. For k > 0, we have

/ x(@) dpi (z) = / x(@)z* dyo ().
X X

This can plainly be rewritten as dup k(z) = z*dug(z).

Now, we can show that

o * k k
Bk’X_Nh—IPoo —dexzzl x(z)z" + hm de ; x(py)(py)
1 &

o * k k-1

= lim 2 x(z)z" + " x(P) Br,x-
We thus define

1 1-r
(1.8) Ly(r,x) = x(z)z" " dpo(z),
T'_l X*

wherer € Z, r # 1.
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From (1.8) we see that

Ldl—hM—f~§§;@w§: x(z)z*

1 _
=-z(- p* " x(p)) B x-

If x is the constant function with a period d = 1, then we have

Ly(L— k1) = ~(1— g )25 = (1 - b),

where (, is defined in [5, p. 44].
Note that N. Koblitz (see [5]) considered the p-adic ¢-function hav-
ing the value —(1 — pk‘l)%ﬁ at the positive integer k, i.e.,

(1.9) Gl —k) = —_—kl_—l/ 2" 1,0,

p
where a is any rational integer not equal to 1, not divisible by p, and

aa] + 1/a—1
PV, 2

1
pra(a+pV2Zp) = a [

for the greatest integer function []4.

2. g-Analogue of the Bernoulli numbers and the Dirichlet
L-function

The g-analogue Bernoulli numbers B,,(¢) and the g-analogue Bernoulli
polynomials B,,(z; ¢) may be defined by means of the generating func-
tions

(21) —° —f’:zs()ﬁ nd —ZB i
' qet—l_n=0 m\ a qet—l HOL

respectively. The g-analogue Bernoulli numbers B,(q) also can be writ-
ten as qelB@+1t _ eB(Dt — ¢ or if we equate the powers of ¢, then
1, ifn=1

2.2 = "_B,=
ey B=o, aB+v-B={ "7
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with the usual convention of replacing B™(q) by B,,. We can easily find
the following relation:

n

ey Bwo=3 (e B.00 -5,

i=0
Ifg#1,thenforn>1

(2.4) Bn(g) _ g7

where Hy,_1(¢™") means the (n — 1)-th Euler numbers (cf. [7], [8]). If
g = 1, then B,(q) = B,, where B,, is the ordinary Bernoulli numbers.
We can define a g-analogue zeta function (4(s) : For s € C,

n

|~Q

s’

3

(2.5) HOEDY

which converges for all s if |g] < 1, for Re(s) > 0if |¢g| = 1,¢q # 1, and
for Re(s) > 1 if ¢ = 1. We easily see that {,(s) can be extended to the
whole s-plane by the contour integral.

The values of (4(s) at non-positive integers are obtained by the
following proposition:

PROPOSITION 2. For any positive integer k, we have

G(1—k)= { _Bea), ifk>1.

Proof. 1t is clear from (2.5). d

COROLLARY 1. For any positive integer k > 1,

G- k) = T Hialg™),

where Hy_1(q™') means the (n — 1)-th Euler numbers.
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Proof. 1t is clear from (2.4). O

Bnt1
COROLLARY 2. Forn 21, (1(-n) = —%le = 350 . & which
satisfy the recurrence relation

¢ ( n)—l-i—Z()

m»-n

REMARK. The g-analogue (-function (4(s) is related to the poly-

logarithm Li,(2), e.g.,
G (-m =ti (3).

where Li,(2) = Y poyg ;—:, |z} < 1.

Let x be a primitive Dirichlet character of conductor d. We define
the generalized g-analogue Bernoulli numbers by

d—1

ateat
(26) Y Maldte” dedt ZB

a=0

By using the definition of (4(s), we can define a g-L-function Lg(s, x):
For s € C, Re(s) > 1,

X

(2.7) Lo(s,x) =3 2 :(”) lg] < 1.
n=1

We easily see that Ly(s,x) can be extended to the whole s-plane by
tbe contour integral.

The values of Lg(s, x) at non-positive integers can be obtained sim-
ilarly as in the g-analogue zeta function.

PROPOSITION 3. For any positive integer k, we have

B
Lyl —-k,x) = __k,z(fI).
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Proof. From the definition of generalized g-analogue Bernoulli num-
bers By ()

d-1
_ a
Brx(@) =Y _q*x(a)d* 1Bk(3;qd) :
a=0
Therefore
d—1 k—1
d ea.t
Bl =k 0@ (§) s
x az_;% dt gledt —14,_,
d k—1 oo d-1 )
_ & ld+ (ld+a)t
= k(dt) ZZq x(ld + a)et* e B
{=0 a=0 t=0
d k—1 oo
— —k et} n nt
( dt) S x|
n=1 =
= —qu(l - k'l X)a
since (%)k"1 e"| = nk~1 This implies that for k > 1,
t=0
B
Lq(l —k,x)= ———k’z(q)-
a

3. ¢-Analogue of the p-adic L-functions and congruences

In this section, we have some congruences for the generalized g-
analogue Bernoulli numbers in a method similar to [4], [5].

Let C,» be the cyclic group consisting of all p™-th roots of unity in
C, for each n > 0 and T, the direct limit of Cpn with respect to the
natural homomorphisms, i.e.,

Tp={w€(Cp|w”n=1forsomen20}.

Hence T, is the union of all Cp» with discrete topology (see [10]).
By Lemma 1, if f(z) = ¢®¢** € UD(Zy,C,), then

(get — DIp(g"€e™) =Ing +1t.
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For ¢ € T,, we have

(qe" — Io(g"e™) =1t.

Hence

t d t"
T, rty __ _ e
Io(q € ) - qet __1 - ZBn(q)nl'
n=0
Therefore we obtain the following:
PROPOSITION 4. We have the Witt’s formula

Bn(g) = / g°z" dpo()

P
for g € Ty withn > 0.

For q € T}, and n > 0, the g-analogue Bernoulli numbers B,(g) and
the g-analogue Bernoulli polynomials are represented by

(3.1) Bn(q)=/ g z" duo(x)
and
(32) Bu(@ia) = [ e+ 0" duol®)

respectively. Let By, ,(q) denote the n-th generalized g-analogue Bern-
oulli numbers belonging to the Dirichlet character x with the conductor
d. Then we have a g-analogue of Witt’s formula in the p-adic cyclotomic
field Q,(x) as follow:

(3.3) Bny(q) = lim — Zx z)z"q n > 0.

Hence the above expression of By, ,(g) is equal to

de 1
P?/
dm v de Z o+ Jm o > X

y=1
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Using (3.3), we deduce that

Bnx(g) = lim WZ X(2)z"q" + P x(p) Br,x (4F)-

We plainly have

(34)  Bax(@) — " X(P)Bax(F) = Jim deZ x(z)z"q".

For r € Z, r # 1, let us define

Cp,q(r) =

Then by Proposition 4, we have

Gpal1— K) = —1 (Bula) ~ P~ Bu(@)).

If ¢ = 1, then {p o(1 — k) is the p-adic {-function (,(1 —k) in (1.9). Let
us also define

dp™

(3.5) Ly(r,x;9) := - _1_ lim 1 Z* x(x){z)~"q%,

1 Nowo de —

where (z) = ;-
We have the following:

PROPOSITION 5. Fork > 1 and q € Ty,

Ly(1— b, X1 0) = — 2 (B (@) = 2 x(9)Bex(a”)).
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REMARK. Put

Up = {qGCp

.1
lg~1lp <p P-l}-

For a p-adic number g € U, B,(g) can be related to the another type
of Bernoulli numbers B,(gq), which satisfy the recursive relations

Bo()=1, q(B(g)+1)" B(>~{%’ n=1
o= AP =1 o, ifn>1.

Our aim is to construct an analogue of the distribution ppg x in (1.7).
The desired distribution of g-analogue Bernoulli numbers is given by
next lemma:

LEMMA 5. (1) For any rational integer m > 1 and k > 0,

mol z+1i
Bi(z;q) = m*1 ;; q’3k< —~ ;q"‘> -

2) Let g € C,,. For any positive integer N, k and d, let ug k., be defined
P 31039

by

1a a N
MB,k;q(a + deZp) = (dPN)k lq Bk(m;qdp ) .

Then pp ,q, extends uniquely to a distribution on X.

Proof. The proof is clear. a

Hereafter, we assume that for ¢ € C,
1-a®"| 21 and gl <1
2

for N > 0 (cf. [2, p. 459 Proposition 2]).

PROPOSITION 6. |ug 1;,4(U)lp < M for all compact-open U C X,
where M is some constant.
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Proof. Applying Lemma 5 (2) with k = 1, we obtain
(a+dpNZ,) = a1
UB,1;9 p 4p) =4 " 1

On the other hand, since every compact-open U is a finite disjoint
. . N
union of intervals a 4+ dpNZ, and |1 — q%" |, > 1, we may conclude
that |us,1,4(U)lp < max|pp 1,4(a+ dpNZ,)|p < M for some constant
M. a

Now, we will give a relation between up k,q and (8,154

It is not hard to show that any open subset which is compact is a
finite union of compact-open sets of the form a + dp™ Z,. Therefore,
we obtain the following:

THEOREM 1. (1) Forall k=1,2,---
1B kiq(@ + deZp) = ka* up1q(a+ deZp) (mod M),

where both sides of this congruence lie in Zy.
(2) WB kg is a measure for all k=1,2,--- .

Proof. (1) By using Lemma 5 (2) and the equation (2.3), we obtain
pB,kqla + dp™ Zy)
— (dpN\k—1,0 _a | dpN

(@) e i)

5 (k N a \F

- Nyk—1_a [ 49P —

e ()ae) ()
= (@p" )¢ (kBy(a*") (= Lk Baa*") (o r
=(dp™ )" 'q 1l g )dp o | B4 )de

= qakak_l'(—;ip_N___l (mod pN).

This completes the proof of our assertion (1).
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For the proof of (2), we have to show that ugq(a + dp"NZ,) is
bounded. By the above assertion (1), we have
|k,k;q(a + deZp)|p = |zp"™ + kak_luB,l;q(a + dPNZp)|p
( for some z € Zy)
< max{|xpN|p, [kak_lﬂl?,l;q(a + dPNZp)|p}

< max{|lep, |kak‘1,u3,1;q(a + deZp)lp}

< 0.
g

Note that up 1.4(a + dp™ Zyp) = + is the same as Koblitz mea-
sure (see [2]).

COROLLARY 3. Let f : X — X be the function given by f(z) =
xk=1 for a fixed positive integer k. Then for all compact-open U C X,

/1M3k,q k/fﬂzﬂ,q

Proof. It follows from Theorem 1. g

Define the n-th generalized g-analogue Bernoulli numbers belonging
to the character x by

(3.6) nx(q) = Zq x(a an(g;qd)-

We express the the generalized g-analogue Bernoulli numbers as inte-
gral forms over X, by using the measure pp k().

PROPOSITION 7. Let x be a primitive Dirichlet character of con-
ductor d. Then

) fx x(2) uB,kiq () = Br,x(q)-
(2) [ox x(@) 18,kq(z) = X ()" Br,x(aP).

(3) S x(@) 2 (@2) = x(2) Bex(a*)
(@) fox x(@) g, 1 (@) = X(2) P Biy(ak).
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Proof. It follows immediately from (3.6) and Lemma 5 (2). O

Using Proposition 7, we have

[ x@) pal) = fx X&) s kala) — | REIC
* P

= By (g) — x(0)P"  Br,x(d")-

(3.7)

For the simplicity, we now set the operator x* = x**4 on f(q) by
x°f(q) = a*~1x(a)f(g®) for some positive integer a (see [4], [7]). Then

/ . x(x) pB,kg(z) = (1 — XP) Br,x(a)-

Finally, we set (z) := ﬁﬁ, where w is the first kind Teichmiiller char-

acter and (:v)”N 1 (mod pV). Put xx = xw k. By Corollary 3, we

have
[ 0@ hmia@) = [ @k (o)
- [ @@ k(@)

If ky = ko (mod (p — 1)p"), then (cf. [5, §II.6])

(1= X By @ = [ x0(@) o (@)
= [ @@ s alo)
= / . x1(@){(z)* kg up1;q(z)  (mod ")

= / ) Xk (T) 13 kz39(T)
= (1 — Xiz)Bkg,sz (q)

Therefore, we obtain the following theorems:
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THEOREM 2. (Kummer type Congruences for the g-analogue Bern-
oulli numbers) If k; = kz (mod (p — 1)p"), then

(1 - Xﬁl)Bklsxkl (q) = (1 - XZz)BkLXIQ (q) (mOd pN)'

THEOREM 3. (p-adic ¢-L-function) The g-analogue of the p-adic

L-function

of 1 s
Ly(s,x:9) % /X (@) x1(2)(1 - 8) B 1g(@) s € Zp,

s—1

interpolates the values

1
2 (1= XD)Brxu (@)

when s = 1 — k with the positive integer k.

References

Z. 1. Borevich and I. R. Shafarevich, Number Theory, Academic Press, 1996.

N. Kobilitz, A new proof of certain formulas for p-adic L-functions, Duke
Math. J. 46 (1979), 455-468.

, p-adic Analysis: a Short Course on Recent Work, Mathematical So-
ciety Lecture Notes, Series 46, London: Cambridge Univ. Press, 1980.

, On Carlitz’s q-Bernoulli numbers, J. Number Theory 14 (1982), 332-

339.

, p-adic Number, p-adic Analysis, end Zeta-Functions, 2nd, Springer-
Verlag, New York, 1984.

T. Kim, On explicit formulas of p-adic g-L-function, Kyushu J. Math. 48
(1994), 73-86.

, An analogue of Bernoulli numbers and their congruences, Rep. Fac.
Sci. Engrg. Saga Univ. Math. 22 (1994), 21-26.

J.-W. Son and M.-S. Kim, On poly-Eulerian numbers, Bull. Korean Math. Soc.
36 (1999), 47-61.

L. C. Washington, Introduction to Cyclotomic Fields, 2nd, Springer-Verlag,
New York, 1997.

[10} C. F. Woodcock, An invariant p-adic integral on Zyp, J. London Math. Soc.

(2), 8 (1974), 731-734.



410 Min-Soo Kim and Jin-Woo Son

Min-Soo Kim

Department of Mathematics
Kyungnam University

Masan 631-701, Korea

E-mail: mskim@nobel kyungnam.ac.kr

Jin-Woo Son

Department of Mathematics
Kyungnam University

Masan 631-701, Korea

E-mail: sonjin@hanma.kyungnam.ac.kr



