DOI QR코드

DOI QR Code

A NOTE ON THE WEIGHTED q-BERNOULLI NUMBERS AND THE WEIGHTED q-BERNSTEIN POLYNOMIALS

  • Dolgy, D.V. (Institute of Mathematics and Computer Sciences, Far Eastern Federal University) ;
  • Kim, T. (Division of General Education-Mathematics, Kwangwoon University)
  • Received : 2011.09.05
  • Accepted : 2011.09.08
  • Published : 2011.12.25

Abstract

Recently, the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$ are introduced in [3]: In this paper we give some interesting p-adic integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials related to the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$. From those integral representation on $\mathbb{Z}_p$ of the weighted q-Bernstein polynomials, we can derive some identities on the modified q-Bernoulli numbers and polynomials with weight ${\alpha}$.

Keywords

References

  1. S. Araci, D. Erdal, J. J. Seo, A study on the fermionic p-adic q-integral on Zp associated with weighted q-Bernstein and q-Genocchi polynomials, Abstract and Applied Analysis 2011(2011), Article in Press http:www.hindawi.com./26592680.
  2. T. Kim, A. Bayad, Y.-H. Kim, A study on the p-adic q-integral on ${\mathbb{Z}_P}$ associated with the weighted q-Bernstein and q-Bernoulli polynomials, J. Ineq. Appl. 2011(2011), Article ID 29513821, 8 pages. https://doi.org/10.1186/1029-242X-2011-8
  3. D. V. Dolgy, T. Kim, S. H. Lee, B. Lee, S. H. Rim, A note on the modified q-Bernoulli numbers and polynomials with weight $\alpha$(communicated).
  4. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.
  5. T. Kim, A note on q-Bernstein polynomials, Russ. J. Math. Phys. 18 (2011), 73-82. https://doi.org/10.1134/S1061920811010080
  6. T. Kim, B. Lee, J. Choi, Y. H. Kim, Y. H. Kim, S, H. Rim, On the q-Euler numbers and weighted q-Bernstein polynomials, Adv. Stud. Contemp. Math. 21 (2011), 13-18.
  7. L. C. Jang, A family of Barnes-type multiple twisted q-Euler numbers and poly- nomials related to Fermionic p-adic invariant integrals on ${\mathbb{Z}_P}$, J. Comput. Anal. Appl. 13 (2011), 376-387.
  8. Y. Simsek, Special functions related to Dedekind-type DC-sums and their appli- cations, Russ. J. Math. Phys. 17 (2010), 495-508. https://doi.org/10.1134/S1061920810040114
  9. S. H. Rim, E.-J. Moon, S.-J. Lee, J.-H. Jin, On the q-Genocchi numbers and poly-nomials associated with q-zeta function, Proc. Jangjeon Math. Soc. 12 (2009), 261-267 .
  10. T. Kim, S.-H. Lee, D. V. Dolgy, C. S. Ryoo A note on the generalized q-Bernoulli measures with weight $\alpha$, Abstract and Applied Analysis. 2011 (2011), Article ID 867217, 9 pages.

Cited by

  1. On the families of q-Euler polynomials and their applications vol.23, pp.1, 2015, https://doi.org/10.1016/j.joems.2014.03.002