DOI QR코드

DOI QR Code

INTERVAL-VALUED FUZZY SUBGROUPS AND HOMOMORPHISMS

  • Kang, Hee-Won (Department of Mathematics Education, Woosuk University)
  • Received : 2011.08.31
  • Accepted : 2011.09.14
  • Published : 2011.12.25

Abstract

We obtain the interval-valued fuzzy subgroups generated by interval-valued fuzzy sets and some properties preserved by a ring homomorphism. Furthermore, we introduce the concepts of interval-valued fuzzy coset and study some of it's properties.

Keywords

References

  1. R.Biswas,Rosenfeld's fuzzy subgroups with interval-valued membership func- tions, Fuzzy set and systems 63(1995) 87-90.
  2. J.Y.Choi, S.R.Kim and K.Hur, Interval-valued smooth topological spaces, Honam Math.J.32[4](2010), 711-738. https://doi.org/10.5831/HMJ.2010.32.4.711
  3. M.B.Gorzalczany, A method of inference in approximate reasoning based on interval-values fuzzy, sets, Fuzzy sets and Systems 21(1987) 1-17. https://doi.org/10.1016/0165-0114(87)90148-5
  4. K. Hur, J.G.Lee and J.Y.Choi, Interval-valued fuzzy relations, J.Korean Institute of Intelligent systems 19(3)(2009)425-432 https://doi.org/10.5391/JKIIS.2009.19.3.425
  5. H.W.Kang and K.Hur, Interval-valued fuzzy subgroups and rings, Honam. Math. J. 32.(4)(2010), 593-617. https://doi.org/10.5831/HMJ.2010.32.4.593
  6. T.K.Mondal and S.K.Samanta,Topology of interval-valued fuzzy sets, Indian J.Pure Appl.Math.30(1)(1999) 20-38.
  7. L.A.Zadeh, Fuzzy sets, Inform. and Control 8(1965),338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  8. K. Hur, H.W.Kang and H.K.Song,Intuitionistic fuzzy subgroups and subrings, Honam Math.J.25(1)(2003),19-41.
  9. L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inform.Sci 8(1975) 199-249. https://doi.org/10.1016/0020-0255(75)90036-5

Cited by

  1. INTERVAL-VALUED FUZZY SUBGROUPS AND LEVEL SUBGROUPS vol.35, pp.3, 2013, https://doi.org/10.5831/HMJ.2013.35.3.525
  2. INTERVAL-VALUED FUZZY SUBGROUPS vol.35, pp.4, 2013, https://doi.org/10.5831/HMJ.2013.35.4.565
  3. INTERVAL-VALUED FUZZY GROUP CONGRUENCES vol.38, pp.2, 2016, https://doi.org/10.5831/HMJ.2016.38.2.403
  4. Interval-valued Fuzzy Normal Subgroups vol.12, pp.3, 2012, https://doi.org/10.5391/IJFIS.2012.12.3.205
  5. Ω-INTERVAL-VALUED FUZZY SUBSEMIGROUPS IN A SEMIGROUP vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.29
  6. Interval-Valued Fuzzy Congruences on a Semigroup vol.13, pp.3, 2013, https://doi.org/10.5391/IJFIS.2013.13.3.231
  7. Lattices of Interval-Valued Fuzzy Subgroups vol.14, pp.2, 2014, https://doi.org/10.5391/IJFIS.2014.14.2.154