• Title/Summary/Keyword: null space

Search Result 161, Processing Time 0.024 seconds

Design of new sliding mode control system using discrete-time switching dynamics and its stability analysis (이산 시간 스위칭 다이나믹을 이용한 새로운 슬라이딩 모드 제어 시스템의 설계 및 안정도 해석)

  • 김동식;서호준;서삼준;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.407-414
    • /
    • 1996
  • In this paper we consider the variable structure control for a class of discrete-time uncertain multivariable systems where the nominal system is linear. Discrete-time switching dynamics are introduced so that a new type of state trajectories called sliding mode may exist on the sliding surface by state feedback. The quantitative analysis for the matched uncertainties will show that every response of the system with the proposed switching dynamics is bounded within small neighborhoods of the state-space origin. Also, by the similarity transformation it will be shown that the eigenvalues of the closed-loop systems are composed of those of the subsystems which govern the range-space dynamics and null-space dynamics. It will be also shown that ideal sliding mode can be obtained in the absence of uncertainties due to one-step attraction to the sliding surface regardless of initial position of states. (author). 12 refs., 2 figs.

  • PDF

PAPR Reduction in Limited Feedback MIMO Beeamforming OFDM Systems (제한된 되먹임의 송신 빔성형 MIMO OFDM 시스템에서 PAPR 감소 기법)

  • Shin, Joon-Woo;Jeong, Eui-Rim;Lee, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.758-766
    • /
    • 2007
  • High peak-to-average power ratio(PAPR) is one of serious problems in the orthogonal frequency division multiplexing(OFDM) systems. This paper proposes a PAPR reduction technique for limited feedback multiple input multiple output(MIMO) OFDM systems. The proposed method is based on the null space of the MIMO channel where a dummy signal is made in the channel's null space and then, subtracted from the original signal to reduce the PAPR. First, we show that a problem occurs when the existing method is directly applied to limited feedback MIMO case. Then, a weight function for the dummy signal is proposed to mitigate the degradation of the receiver performance while still reducing PAPR significantly. The weight function is derived from a constrained nonlinear optimization problem to minimize the mean square error between the received signal and its ideal signal. Simulation results shows that the proposed technique provides about 2.5dB PAPR reduction with 0.2dB bit-error probability loss.

Least Squares Method-Based System Identification for a 2-Axes Gimbal Structure Loading Device (2축 짐벌 구조 적재 장치를 위한 최소제곱법 기반 시스템 식별)

  • Sim, Yeri;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.288-295
    • /
    • 2022
  • This study shows a system identification method of a balancing loading device for a stair climbing delivery robot. The balancing loading device is designed as a 2-axes gimbal structure and is interpreted as two independent pendulum structures for simplifying. The loading device's properties such as mass, moment of inertia, and position of the center of gravity are changeable for luggage. The system identification process of the loading device is required, and the controller should be optimized for the system in real-time. In this study, the system identification method is based on least squares method to estimate the unknown parameters of the loading device's dynamic equation. It estimates the unknown parameters by calculating them that minimize the error function between the real system's motion and the estimated system's motion. This study improves the accuracy of parameter estimation using a null space solution. The null space solution can produce the correct parameters by adjusting the parameter's relative sizes. The proposed system identification method is verified by the simulation to determine how close the estimated unknown parameters are to the real parameters.

Denoising Diffusion Null-space Model and Colorization based Image Compression

  • Indra Imanuel;Dae-Ki Kang;Suk-Ho Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.22-30
    • /
    • 2024
  • Image compression-decompression methods have become increasingly crucial in modern times, facilitating the transfer of high-quality images while minimizing file size and internet traffic. Historically, early image compression relied on rudimentary codecs, aiming to compress and decompress data with minimal loss of image quality. Recently, a novel compression framework leveraging colorization techniques has emerged. These methods, originally developed for infusing grayscale images with color, have found application in image compression, leading to colorization-based coding. Within this framework, the encoder plays a crucial role in automatically extracting representative pixels-referred to as color seeds-and transmitting them to the decoder. The decoder, utilizing colorization methods, reconstructs color information for the remaining pixels based on the transmitted data. In this paper, we propose a novel approach to image compression, wherein we decompose the compression task into grayscale image compression and colorization tasks. Unlike conventional colorization-based coding, our method focuses on the colorization process rather than the extraction of color seeds. Moreover, we employ the Denoising Diffusion Null-Space Model (DDNM) for colorization, ensuring high-quality color restoration and contributing to superior compression rates. Experimental results demonstrate that our method achieves higher-quality decompressed images compared to standard JPEG and JPEG2000 compression schemes, particularly in high compression rate scenarios.

Impact control of redundant manipulators using null-space dynamucs

  • Chung, W.J.;Choi, S.L.;kim, I.H.;Chung, G.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.89-94
    • /
    • 1994
  • This paper presents an impact control algorithm for reducing the potentially damaging effects by interation of redundant manipulators with their environments. In the. proposed control algorithm, the redundancy is resolved at the torque level by locally minimizing joint torque, subject to tire operational space dynamic formulation which maps tire joint torque set into the operational forces. For a given pre-impact velocity of the manipulator, the proposed approach is on generating joint space trajectories throughout the motion near the contact which instantaneously minimize the impulsive force which is a scalar function of manipulator's configurations. This is done by using the null space dynamics which does not affect the motion of an end-effector. The comparative evaluation of the proposed algorithm with a local torque optimization algorithm without reducing impact is performed by computer simulation. The simulation results illustrate the effectiveness of the algorithm in reducing both the effects of impact and large torque requirements.

  • PDF

SEQUENCES IN THE RANGE OF A VECTOR MEASURE

  • Song, Hi Ja
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.13-26
    • /
    • 2007
  • We prove that every strong null sequence in a Banach space X lies inside the range of a vector measure of bounded variation if and only if the condition $\mathcal{N}_1(X,{\ell}_1)={\Pi}_1(X,{\ell}_1)$ holds. We also prove that for $1{\leq}p<{\infty}$ every strong ${\ell}_p$ sequence in a Banach space X lies inside the range of an X-valued measure of bounded variation if and only if the identity operator of the dual Banach space $X^*$ is ($p^{\prime}$,1)-summing, where $p^{\prime}$ is the conjugate exponent of $p$. Finally we prove that a Banach space X has the property that any sequence lying in the range of an X-valued measure actually lies in the range of a vector measure of bounded variation if and only if the condition ${\Pi}_1(X,{\ell}_1)={\Pi}_2(X,{\ell}_1)$ holds.

  • PDF

Development of Servo Type Angle-of-Attack Sensor for UAV (무인항공기용 서보형 받음각센서 개발)

  • Park, Mi-Hyun;Kim, Sung-Su;Ryoo, Chang-Kyung;Choi, Kee-Young;Park, Choon-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.511-517
    • /
    • 2009
  • A servo type angle of attack sensor using the null-seeking method is designed and its characteristics are analyzed in this study. Angle-of-attack in the null-seeking method is given by the probe rotation angle with respect to the body reference line when pressure difference measured in two holes on the probe becomes zero. This method provides highly accurate and uniform angle-of-attack measurements over all range. Hence, this kind of angle-of-attack sensor is adequate for unmanned aerial vehicles(UAVs). In this paper, we first analyze the requirements for developing angle-of-attack sensors. And the servo type angle-of-attack sensor is then designed and fabricated. The on-board angle-of-attack calculation algorithm is also developed. Finally, the characteristics of the developed angle-of-attack sensor are identified through MATLAB Simulink and wind tunnel tests.

A HYBRID SCHEME USING LU DECOMPOSITION AND PROJECTION MATRIX FOR DYNAMIC ANALYSIS OF CONSTRAINED MULTIBODY SYSTEMS

  • Yoo, W.S.;Kim, S.H.;Kim, O.J.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.117-122
    • /
    • 2001
  • For a dynamic analysis of a constrained multibody system, it is necessary to have a routine for satisfying kinematic constraints. LU decomposition scheme, which is used to divide coordinates into dependent and independent coordinates, is efficient but has great difficulty near the singular configuration. Other method such as the projection matrix, which is more stable near a singular configuration, takes longer simulation time due to the large amount of calculation for decomposition. In this paper, the row space and the null space of the Jacobian matrix are proposed by using the pseudo-inverse method and the projection matrix. The equations of the motion of a system are replaced with independent acceleration components using the null space of the Jacobian matrix. Also a new hybrid method is proposed, combining the LU decomposition and the projection matrix. The proposed hybrid method has following advantages. (1) The simulation efficiency is preserved by the LU method during the simulation. (2) The accuracy of the solution is also achieved by the projection method near the singular configuration.

  • PDF

Implementation of Memory Copy Reduction Scheme for Multimedia Service in Embedded Linux Kernel (내장형 리눅스 커널에서 멀티미디어 서비스를 위한 메모리 복사 감소 기법의 구현)

  • Kim, Jeong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1058-1065
    • /
    • 2004
  • Embedded system is widely used in various applications from simple monitor to a set-top box with CPU, memory and hard disk drives. Specially, embedded OS is ported in moveable or small machinery since it ordinarily transmits multimedia data. In this paper, we propose Null copy scheme on the embedded linux system for multimedia service, which can reduce memory copy overhead from user address space to kernel one, and vice versa. Since embedded system for networked multimedia service has low level computing power as well as memory, the Null copy scheme can provide more improved QoS. Our image transmission experiment results on embedded linux target board(CPU utilization an Deadline miss rates) installed a web camera have shown that the proposed scheme can increase fast response and lower CPU overhead.

  • PDF