• Title/Summary/Keyword: nonlinear partial differential equations

Search Result 127, Processing Time 0.024 seconds

APPLICATION OF EXP-FUNCTION METHOD FOR A CLASS OF NONLINEAR PDE'S ARISING IN MATHEMATICAL PHYSICS

  • Parand, Kourosh;Amani Rad, Jamal;Rezaei, Alireza
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.763-779
    • /
    • 2011
  • In this paper we apply the Exp-function method to obtain traveling wave solutions of three nonlinear partial differential equations, namely, generalized sinh-Gordon equation, generalized form of the famous sinh-Gordon equation, and double combined sinh-cosh-Gordon equation. These equations play a very important role in mathematical physics and engineering sciences. The Exp-Function method changes the problem from solving nonlinear partial differential equations to solving a ordinary differential equation. Mainly we try to present an application of Exp-function method taking to consideration rectifying a commonly occurring errors during some of recent works.

Development of Pprocess Models by Partial Differential Equations and Ccontrol Systems (화학 공정의 편미분 방정식 모델설정과 제어에 관한 연구)

  • 최영순;이인범;장근수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.105-107
    • /
    • 1991
  • A chemical process model represented by partial differential equations was studied as one of nonlinear distributed parameter control problems. Using an optimal control theory in the form of maximum principles based on nonlinear integral equations, an algorithm to solve the problem was developed and coded into a computer program.

  • PDF

ANALYTIC TREATMENT FOR GENERALIZED (m + 1)-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS

  • AZ-ZO'BI, EMAD A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.4
    • /
    • pp.289-294
    • /
    • 2018
  • In this work, a recently developed semi-analytic technique, so called the residual power series method, is generalized to process higher-dimensional linear and nonlinear partial differential equations. The solutions obtained takes a form of an infinite power series which can, in turn, be expressed in a closed exact form. The results reveal that the proposed generalization is very effective, convenient and simple. This is achieved by handling the (m+1)-dimensional Burgers equation.

A NEW METHOD FOR SOLVING NONLINEAR SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

  • Gachpazan. M.;Kerayechian, A.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.453-465
    • /
    • 2000
  • In this paper, a new method for finding the approximate solution of a second order nonlinear partial differential equation is introduced. In this method the problem is transformed to an equivalent optimization problem. them , by considering it as a distributed parameter control system the theory of measure is used for obtaining the approximate solution of the original problem.

NEW EXACT SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS BY SUB-ODE METHOD

  • Lee, Youho;An, Jeong Hyang
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.683-699
    • /
    • 2013
  • In this paper, an improved ($\frac{G^{\prime}}{G}$)-expansion method is proposed for obtaining travelling wave solutions of nonlinear evolution equations. The proposed technique called ($\frac{F}{G}$)-expansion method is more powerful than the method ($\frac{G^{\prime}}{G}$)-expansion method. The efficiency of the method is demonstrated on a variety of nonlinear partial differential equations such as KdV equation, mKd equation and Boussinesq equations. As a result, more travelling wave solutions are obtained including not only all the known solutions but also the computation burden is greatly decreased compared with the existing method. The travelling wave solutions are expressed by the hyperbolic functions and the trigonometric functions. The result reveals that the proposed method is simple and effective, and can be used for many other nonlinear evolutions equations arising in mathematical physics.

Fluid Flow in a Multi-Layer Porous Medium (多層多孔質媒體內의 流體流動)

  • 이충구;서정윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.621-626
    • /
    • 1985
  • Unsteady groundwater flow in a three-layer unconfined aquifer has been studied theoretically and experimentally. Two different methods have been used in solving the governing equations of the flow, the nonlinear partial differential equations; (1) The governing equations are linearized for each layer and approximate solutions are obtained. (2) The governing equations are transformed to nonlinear ordinary differential equations, which are solved numerically by Runge-Kutta procedure. Fine, middle sized and coarse sands are used in the experiments. It is found that the solutions from the method(2) ( the reduction of partial differential equations to ordinary differential equations) give better agreement with the experimental results than the solution from the method(1).

Optimal control of tubular reactors described by partial differential equations

  • Choe, Young-Soon;Lee, In-Beum;Soo, Chang-Kun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.436-439
    • /
    • 1992
  • A tubular reactor model represented by partial differential equations was studied as one of nonlinear distributed parameter optimal control problems. An optimal control theory in the form of maximum principles based on nonlinear integral equations was used to develop an algorithm to solve the problem.

  • PDF

NUMERICAL RESULTS ON ALTERNATING DIRECTION SHOOTING METHOD FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

  • Kim, Do-Hyun
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.57-72
    • /
    • 2008
  • This paper is concerned with the numerical solutions to steady state nonlinear elliptical partial differential equations (PDE) of the form $u_{xx}+u_{yy}+Du_{x}+Eu_{y}+Fu=G$, where D, E, F are functions of x, y, u, $u_{x}$, and $u_{y}$, and G is a function of x and y. Dirichlet boundary conditions in a rectangular region are considered. We propose alternating direction shooting method for solving such nonlinear PDE. Numerical results show that the alternating direction shooting method performed better than the commonly used linearized iterative method.

  • PDF

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.