• Title/Summary/Keyword: nonlinear parabolic equations

Search Result 42, Processing Time 0.023 seconds

A PRIORI $L^2$-ERROR ESTIMATES OF THE CRANK-NICOLSON DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR PARABOLIC EQUATIONS

  • Ahn, Min-Jung;Lee, Min-A
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.615-626
    • /
    • 2010
  • In this paper, we analyze discontinuous Galerkin methods with penalty terms, namly symmetric interior penalty Galerkin methods, to solve nonlinear parabolic equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ${\ell}^{\infty}$ ($L^2$) error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

ERROR ESTIMATES FOR FULLY DISCRETE DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR PARABOLIC EQUATIONS

  • Ohm, Mi-Ray;Lee, Hyun-Yong;Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.953-966
    • /
    • 2010
  • In this paper, we develop discontinuous Galerkin methods with penalty terms, namaly symmetric interior penalty Galerkin methods to solve nonlinear parabolic equations. By introducing an appropriate projection of u onto finite element spaces, we prove the optimal convergence of the fully discrete discontinuous Galerkin approximations in ${\ell}^2(L^2)$ normed space.

Existence and Behavior Results for a Nonlocal Nonlinear Parabolic Equation with Variable Exponent

  • Sert, Ugur;Ozturk, Eylem
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.145-161
    • /
    • 2020
  • In this article, we study the solvability of the Cauchy-Dirichlet problem for a class of nonlinear parabolic equations with nonstandard growth and nonlocal terms. We prove the existence of weak solutions of the considered problem under more general conditions. In addition, we investigate the behavior of the solution when the problem is homogeneous.

SYMMETRY AND MONOTONICITY OF SOLUTIONS TO FRACTIONAL ELLIPTIC AND PARABOLIC EQUATIONS

  • Zeng, Fanqi
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1001-1017
    • /
    • 2021
  • In this paper, we first apply parabolic inequalities and a maximum principle to give a new proof for symmetry and monotonicity of solutions to fractional elliptic equations with gradient term by the method of moving planes. Under the condition of suitable initial value, by maximum principles for the fractional parabolic equations, we obtain symmetry and monotonicity of positive solutions for each finite time to nonlinear fractional parabolic equations in a bounded domain and the whole space. More generally, if bounded domain is a ball, then we show that the solution is radially symmetric and monotone decreasing about the origin for each finite time. We firmly believe that parabolic inequalities and a maximum principle introduced here can be conveniently applied to study a variety of nonlocal elliptic and parabolic problems with more general operators and more general nonlinearities.

APPROXIMATE CONTROLLABILITY FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Rho, Hyun-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.173-181
    • /
    • 2012
  • In this paper, we study the control problems governed by the semilinear parabolic type equation in Hilbert spaces. Under the Lipschitz continuity condition of the nonlinear term, we can obtain the sufficient conditions for the approximate controllability of nonlinear functional equations with nonlinear monotone hemicontinuous and coercive operator. The existence, uniqueness and a variation of solutions of the system are also given.