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FORCED OSCILLATIONS OF SOLUTIONS OF
IMPULSIVE NONLINEAR PARABOLIC
DIFFERENTIAL-DIFFERENCE EQUATIONS

Drumi BAIiINOv AND EMIL MINCHEV

ABSTRACT. Sufficient conditions for forced oscillations of the so-
lutions of impulsive nonlinear parabolic differential-difference equa-
tions are obtained.

1. Introduction

The impulsive differential equations are adequate apparatus for math-
ematical simulation in the science and technology. These equations pro-
vide natural mathematical description of processes which are subject to
short-time perturbations during their evolution. In contrast to the big
number of results for impulsive ordinary differential equations collected
in seven monographs during the last eight years 2], [7]-{11], [15], the
first results for impulsive partial differential equations were obtained in
the recent years [1], [3]-[6], [12]-{14].

The present paper is concerned with the forced oscillations of solu-
tions of impulsive nonlinear parabolic differential-difference equations
subject to certain boundary conditions. The oscillation properties of
the solutions are investigated via averaging technique.

2. Preliminary notes

__Let Q C R™ be a bounded domain with a smooth boundary 0f2 and
Q=0U09. Suppose that 0 =ty < t; <ty < ... <t < ... are given
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numbers and ¢;,;, =t +0,k=0,1,..., where 0 =const >0 and [l is a
fixed natural number.

Define Jimp, = {t:}2,, Ry = [0,+00), E® = [-0,0] x Q, E =
(0,400) x Q, E* = R, X Q, Ejrp = {(t,2) € E: t € Jimp}, B}y =
{(t,x) € E*: t € Jimp}-

Let Cimp[E°U E*, R] be the class of all functions u: E°UE* — R such
that:

(i) The restriction of u to the set E° U E* \ Ej, is a continuous
function.

(ii) For each (t,z) € E},  there exist the limits

imp

lim wu(q,s) =u(t™,z), lim wu(g,s)=u(t,z
(qys);(t@) (@.9) ( ) (qu);t(tﬂ) (q ) ( )

and u(t, z) = u(t*, z) for (¢,z) € E},

imp*
The class of functions Cjm,|E*, R] is defined analogously as E* is writ-
ten instead of E° U E* in the above definition.

Consider the nonlinear parabolic differential-difference equation

(1) ut(tv 2") - a(t)Au(t: :D) + p(tv a:)f(u(t -0, .'Z:))
= H(t,z), (t,z) € E\ Eimp,

subject to the impulsive condition

(2) u(t,z) —u(t™,z) = g(t, z,u(t”, z)), (¢, z)€ E}

imp)
and the boundary conditions

ou

(3) (9_n(t’ z) +y(t x)u(t,z) =0, (t,z) € (Ry\ Jimp) X 00,
or,
(4) u(t,z) =0, (t,z)€ (Ry\ Jimp) X OQ.

The functions a: Ry, — R, p: B* - R, f: R - R, H: E* — R,
g: B _XR—-R v:R, x93 — R are given.

imp

DEFINITION 1. The function u: E°U E* — R is called a solution of
the problem (1)-(3) ((1), (2), (4)) if:

(i) u € Cimp|E°U E*, R], there exist the derivatives w(t, ), Uz (¢, 2),
i=1,...,nfor (t,z) € E\ Ejn, and u satisfies (1) on E \ Ejpy.

(ii) u satisfies (2), (3) ((2), (4)).
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DEFINITION 2. The nonzero solution u(t, z) of equation (1) is said to
be nonoscillating if there exists a number p > 0 such that u(¢,z) has a

constant sign for (¢,z) € [g, +00) x Q. Otherwise, the solution is said to
oscillate.

For the function sign we have adopted the following definition
1 if >0,
signz = 0 if z=0,
-1 if z<0.
Introduce the following assumptions:
Hl. a E Cimp[R+7R+]'
H2. p E szp[E*;R+]-
H3. g € C(E},, x R,R).
H4. v € Cip[R, x 0, R,].
H5. f € C(R,R), f(u) = —f(~u) for u > 0, f is a positive and convex
function in the interval (0, +00).
H6. H € CinplE*, R].
In the sequel the following notations will be used:

P(t) = min{p(t,z): z € Q},

V(t) = / ult, )do / d:c) _1,

Q Q

-1

Hy(t) = /H(t, z)dz (/dz .
Q Q

3. Main results

We give sufficient conditions for oscillation of the solutions of problem
(1)-(3).

LEMMA 1. Let the following conditions hold:

1. Assumptions H1-H6 are fulfilled.

2. u € C¥(E\ Eimp)NCY(E*\ E},,,,) is a positive solution of the problem
(1)-(3) in the domain E.

3.9(tr, 1,8 < L&, k=1,2,... ,2 € Q, £ € Ry, Ly > 0 are constants.
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Then the function V (t) satisfies for t > o the impulsive differential
inequality

(5) VIt)+ PR f(V(E—0)) < Ho(t), t#t,
(6) V(te) < (14 Lp)V(t)-

Proof. Let t > o. Integrating the equation (1) with respect to z over
the domain 2, we obtain

% / u(t, z)dz — a(t) / Aut, z)dz +
Q Q

(7) + /p(t,a:)f(u(t —o0,z))dz = /H(t,x)d.’r, t £ty
Q

Q
From the Green formula and H4 it follows that

(8) /Au(t,m)d:c = / g—:;dS = —/'y(t,x)u(t,x)dS <0, t#t.

Q a0

Moreover, for t # t;, the Jensen inequality enables us to get

/ p(t, @) f(ult - o, z))dz > P(t) / fult — 0, 2))dz >
Q

Q

9) > P(t)f (/u(t ~ 0,2)da (/dm) _1> /dm = PO)F(V(t— a))/dm.
Q Q Q

0
In virtue of (8) and (9) we obtain from (7) that

V(@) + PO)fF(V(t—0)) < Ho(t),  t#t

For t = t;, we have that

Vit - V(E) < L ( / dm) / w(ts, z)de = LV (8),

Q Q
that is,
V(tk) < (1 + Lk)V(t;)
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DEFINITION 3. The solution'V € Cippl[—0, 0) UR,, R] N CHUZ (k,
tr+1), R) of the differential inequality (5), (6) is called eventually positive
(negative), if there exists a number ¢* > 0 such that V(t) > 0 (V(¢) < 0)
for t > ¢t

THEOREM 1. Let the following conditions hold:

1. Assumptions H1-H6 are fulfilled.

2. g(t, 2, 8) S L&, k=1,2,... ,z € Q, € € Ry, Ly > 0 are constants
and g(tlh z, £) = _g(tka z, _é)

3. The differential inequality (5), (6) and the differential inequality
(10) V() + POFV(E—0) < —Holt), t#t,
(11) V() < (1+ Lg)V(ty),
have no eventually positive solutions.

Then each nonzero solution v € C*(E \ Ejnp) N CY(E* \ E},,) of
problem (1)-(3) oscillates in the domain E.

Proof. Suppose the conclusion of the theorem is not true, i.e., u(¢, z)
is a nonzero solution of the problem (1)-(3) which is of the class C?(E\
Eimp) N C'(E* \ E},,), and it has a constant sign in the domain E, =
[, +00) x Q, p > 0. If u(t,z) > 0 for (¢,z) € E,, then it follows from
Lemma 1 that V(t) is a positive solution of the differential inequality
(5), (6) for t > u + o, which contradicts condition 3 of the theorem. If
u(t,z) < 0 for (¢,z) € E,, then the function —u(t, z) is a solution of the
problem

w(t, ) — a(t)Au(t, z) + p(t, z) f(u(t — 0, 2))
=—H(t,z), (t,z) € E\ Eimp,

u(t,z) —u(t™,z) = g(t,z,u(t",x)), (t,z)€ E;

imp»
ou
5;1—(15,1‘) +y(t, z)u(t,z) =0, (¢ z)€ (Ry\ Jimp) X 09,

which is positive in E,. From Lemma 1 it follows that

/[—u(t,x)]da: (/ dm) i

Q Q

is a positive solution of the differential inequality (10), (11) for¢t > p+o
which also contradicts condition 3 of the theorem. |
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THEOREM 2. Let the following conditions hold:
].. P E Cimp[R+,R+]7 H() E Cimp[R+,R].
2. f(u) >0 foru > 0.

3. ZLk <400, Ly >0,k=1,2,..., are constants.
k=1
4. For any number ty > o we have

liminf/ H (1 + Ly)Hp(s)ds = —

t—o0
s<tp <t

Then the differential inequality (5), (6) has no eventually positive
solutions.

Proof. Suppose the conclusion of the theorem is not true and let V (¢)
be a positive solution of the differential inequality (5), (6) in the interval
[t*, +00), t* > 0. Then it follows from conditions 1 and 2 of the theorem
that

V'(t) < Hy(t), t>t'+o, t#t.

Integrating over the interval [£;,1], t* + o < #, < ¢, we obtain

(12) V(t) < H (1+ L)V ( t1)+/ H (1 + L) Ho(s)ds.

f<tp<t s<t <t

Conditions 3 and 4 of the theorem 1mply that the right-hand side of (12)
is not bounded from below and hence V'(t) cannot be eventually positive
solution. O

COROLLARY 1. Let the following conditions hold:
1. Assumptions H1-H6 are fulfilled.
2.9(tg, 2, &) K Ly& k=1,2,... ,2 € Q, € € R, Ly > 0 are constants

such that ZLk < +o00 and g(tg, z,&) = —g(t, z, —£).
k=1
3. For any number ty > o we have

hmlnf/ H (14 Lg)Hy(s)ds

s<tp<t
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and

¢
limsup] H (1 + Ly)Ho(s)ds = +o0.

tmoo <t
to

Then each nonzero solution u € C*(E \ E;mp) N CY(E*\ Ej,,) of the
problem (1)-(3) oscillates in the domain E.

Corollary 1 follows from Theorem 1 and Theorem 2.

Now we give sufficient conditions for oscillation of the solutions of
problem (1), (2), (4). Consider the following Dirichlet problem
Ap+ap=0 in £,
(13)
Pl =0,
where a = const. It is known that the smallest eigenvalue aq of the prob-

lem (13) is positive and the corresponding eigenfunction @o(z) > 0 for
z € ). Without loss of generality we may assume that ¢, is normalized,

ie., /cpo(z)dz =1.
Q
Introduce the notations:

Wi(t) = / u(t, 2)eole)de,

Q
Hy(t) = / H(t, z)po(z)dz.
Q

LEMMA 2. Let the following conditions hold:

1. Assumptions H1-H3, H5, and H6 are fulfilled.

2.u € C*(E\ Eimp)NC'(E*\ E},,,) is a positive solution of the problem
(1), (2), (4) in the domain E.

3. 9(tr, z,8) < Ly&, k=1,2,... ,z € Q, £ € Ry, Ly > 0 are constants.

Then the function W (t) satisfies for t > o the impulsive differential
inequality

(14)  W'(t) + aa(t)W(t) + P() f(W(t — o)) < Hi(t), t#t,
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Proof. Let t > 0. We multiply the both sides of equation (1) by the
eigenfunction ¢y(z) and integrating with respect to = over 2, we obtain

% u(t,z)po(z)dz — a(t)/Au(t, z)po(z)dz +
Q Q

(16) + /p(t,z)f(u(t—— 0,2))po(z)dr = /H(t,x)<po(:z:)da:, t # t.
) )
From the Green formula it follows that

/Au(t, x)po(z)dr = /u(t, z)Apy(z)dr =
Q

Q

(17) = —ap /u(t,m)goo(:c)dx =—ogW(t), t#t,
Q

where o > 0 is the smallest eigenvalue of the problem (13).
Moreover, from the Jensen inequality

[rt st -o.odn@ide > P) [ st - o.)on()de >
Q

(1)

(18) 2 PQt)f (/ u(t - o, z)‘Po(m)dx) =PO)f(W(t—0)), t#t.
Q
Making use of (17) and (18), we obtain from (16) that
W'(t) + aga(t)W(t) + P) f(W(t — o)) < H\(t), t # ty.

For ¢ = ¢;, we have that

W(te) — W(t) < L / u(te, 2)po(w)ds = LW (£),
Q
that is,
W(te) < (1+ L)W (5). 0

Analogously to Theorem 1, we can prove the following theorem.

THEOREM 3. Let the following conditions hold:

1. Assumptions H1-H3, H5, and H6 are fulfilled.

2.9(tr,2,8) < Li& k=1,2,... ,z € Q, £ € Ry, Ly > 0 are constants
and g(tk,l', 5) = _g(tk: z, —6)
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3. The differential inequality (14), (15) and the differential inequality
W'(t) + aa(t)W(t) + P)f(W(t — o)) < —Hi(t), t#,
W(ts) < (1+ LoW(t),
have no eventually positive solutions.

Then each nonzero solution u € C*(E \ Einp) N CY(E* \ E;,,) of
problem (1), (2), (4) oscillates in the domain E.

THEOREM 4. Let the following conditions hold:
1. a, P 6 Cimp[R+,R+], H1 E Cimp[R+,R].
2. f(u) >0 foru > 0.

3. ZLk < +o0, Ly >0,k=1,2,..., are constants.
k=1
4. For any number ty > o we have

liminf/ I @+ )e%0J0 8 H, (5)ds = —oo0

t—00
s<tp<t
Then the diﬁ‘”erenmal inequality (14), (15) has no eventually positive
solutions.

The proof of Theorem 4 is analogous to the proof of Theorem 2. It is
omitted here.

COROLLARY 2. Let the following conditions hold:

1. Assumptions H1-H3, H5, and H6 are fulfilled.

2. g(te,z,8) S L& k=1,2,... ,z €, £ € Ry, Ly > 0 are constants
o0

such that ZLk < +o00 and g(t, z, &) = —g(tk, T, —§).
k=1
3. For any number ty > o we have
t

lim inf / T @+ Le)eho D Hy(5)ds = —o0

t—o0
s<tr.<t

and

lim sup / IT 1+ Lie e 9 . (5)ds = +o0.

oo s<tp<t



1890 Drumi Bainov and Emil Minchev

Then each nonzero solution u € C*(E \ E;,) N CYE* \ E;,,) of
problem (1), (2), (4) oscillates in the domain E.

Corollary 2 follows from Theorem 3 and Theorem 4.
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