Acknowledgement
This work was supported by a 2-Year Research Grant of Pusan National University.
References
- E. Acerbi and G. Mingione: Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math. 584 (2005), 117-148.
- E. Acerbi and G. Mingione: Gradient estimates for a class of parabolic systems, Duke Math. J. 136 (2007), no. 2, 285-320.
- V. Bogelein: Global Calderon-Zygmund theory for nonlinear parabolic systems, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 555-596. https://doi.org/10.1007/s00526-013-0687-4
- S. Byun and W. Kim: Global Calderon-Zygmund estimate for p-Laplacian parabolic system, Math. Ann. 383 (2022), no. 1-2, 77-118. https://doi.org/10.1007/s00208-020-02089-z
- L. A. Caffarelli and I. Peral: On W1,p estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1998), no. 1, 1-21. https://doi.org/10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G
- F. Duzaar, F, G. Mingione, K. Steffen: Parabolic systems with polynomial growth and regularity, Mem. Amer. Math. Soc. 214 (2011), no. 1005, x+118 pp. https://doi.org/10.1090/S0065-9266-2011-00614-3
- E. DiBenedetto and J. Manfredi: On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Amer. J. Math. 115 (1993), no. 5, 1107-1134. https://doi.org/10.2307/2375066
- E. Giusti: Direct methods in the calculus of variations, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
- T. Iwaniec: Projections onto gradient fields and Lp-estimates for degenerated elliptic operators, Studia Math. 75 (1983), no. 3, 293-312. https://doi.org/10.4064/sm-75-3-293-312
- M. Lee and J. Ok: Local Calderon-Zygmund estimates for parabolic equations in weighted Lebesgue spaces, Math. Eng. 5 (2023), no. 3, Paper No. 062, 20 pp
- R.E. Showalter: Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs 49, American Mathematical Society, Providence, RI, 1997.