• Title/Summary/Keyword: nondestructive material evaluation

Search Result 200, Processing Time 0.023 seconds

Study on the Nonlinear Electromagnetic Acoustic Resonance Method for the Evaluation of Hidden Damage in a Metallic Material (금속 재료의 잠닉손상 평가를 위한 비선형 전자기음향공진 기법에 관한 연구)

  • Cho, Seung-Wan;Cho, Seung-Hyun;Park, Choon-Su;Seo, Dae-Cheol;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.4
    • /
    • pp.277-282
    • /
    • 2014
  • Recently, much attention has been paid to nonlinear ultrasonic technology as a potential tool to assess hidden damages that cannot be detected by conventional ultrasonic testing. One nonlinear ultrasonic technique is measurement of the resonance frequency shift, which is based on the hysteresis of the material elasticity. Sophisticated measurement of resonance frequency is required, because the change in resonance frequency is usually quite small. In this investigation, the nonlinear electromagnetic acoustic resonance (NEMAR) method was employed. The NEMAR method uses noncontact electromagnetic acoustic transducers (EMATs) in order to minimize the effect of the transducer on the frequency response of the object. Aluminum plate specimens that underwent three point bending fatigue were tested with a shear wave EMAT. The hysteretic nonlinear parameter ${\alpha}$, a key indicator of damage, was calculated from the resonance frequency shift at several levels of input voltage. The hysteretic nonlinear parameter of a damaged sample was compared to that of an intact one, showing a difference in the values.

Correlation between Probe Frequency and Echo-Pulse Velocity for Ultrasonic Testing of a Fiber-Reinforced Plastic Hull Plate (복합소재 선체 외판의 초음파 탐상을 위한 탐촉자 주파수와 수신기 음향 속력의 상관관계)

  • Lee, Sang-gyu;Han, Zhiqiang;Lee, Chang-woo;Oh, Daekyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.219-226
    • /
    • 2020
  • Nondestructive testing is one of the most commonly used quality inspection methods for evaluating ship structures. However, accurate evaluation is dif icult because various composite materials, such as reinforcements, resin, and fiber-reinforced plastics (FRPs), are used in hulls, and manufacturing quality differences are likely to exist owing to the fabrication environment and the skill level of workers. This possibility is especially true for FRP ships because they are significantly thicker than other structures, such as automobiles and aircraft, and are mainly manufactured using the hand lay-up method. Because the density of a material is a critical condition for ultrasonic inspection, in this study, a hull plate was selected from a vessel manufactured using e-glass fiber, which is widely used in the manufacture of FRP vessels with the weight fraction of the glass content generally considered. The most suitable ultrasonic testing conditions for the glass FRP hull plate were investigated using a pulse-echo ultrasonic gauge. A-scans were performed with three probes (1.00, 2.25, and 5.00 MHz), and the results were compared with those of the hull plate thickness measured using a Vernier caliper. It was found that when the probe frequency was higher, the eco-pulse velocity of the receiver had to be lowered to obtain accurate measurement results, whereas fewer errors occurred at a relatively low probe frequency.

A Study on the Measurement of Ultrasound Velocity to Evaluate Degradation of Low Voltage Cables for Nuclear Power Plants (원전 저압케이블 열화도 평가를 위한 초음파 음속계측에 관한 연구)

  • Kim, Kyung-Cho;Kang, Suk-Chull;Goo, Charles;Kim, Jin-Ho;Park, Jae-Seok;Joo, Geum-Jong;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • Several kinds of low voltage cables have been used in nuclear power plants for the supply of electric power, supervision, and the propagation of control signals. These low voltage tables must be inspected for safe and stable operation of nuclear power plants. In particular, the degradation diagnosis to estimate the integrity of low voltage rabies has recently been emphasized according to the long use of nuclear power plants. In order to evaluate their degradation, the surrounding temperature, hardness of insulation material, elongation at breaking point (EAB), etc. have been used. However, the measurement of temperature or hardness is not useful because of the absence of quantitative criteria; the inspection of a sample requires turning off of the power plant power; and, the electrical inspection method is not sufficiently sensitive from the initial through the middle stage of degradation. In this research, based on the theory that the ultrasonic velocity changes with relation to the degradation of the material, we measured the ultrasonic velocity as low voltage cables were degraded. To this end, an ultrasonic degradation diagnosis device was developed and used to measure the ultrasonic velocity with the clothing on the cable, and it was confirmed that the ultrasonic velocity changes according to the degradation of low voltage cables. The low voltage cables used in nuclear power plants were degraded at an accelerated rate, and EAB was measured in a tensile test conducted after the measurement of ultrasonic velocity. With the increasing degradation degree, the ultrasonic velocity decreased, whose potential as a useful parameter for the quantitative degradation evaluation was thus confirmed.

A Study on Electromagnetic Properties in OPC Mortar with Different Chloride Content (염화물을 혼입한 OPC 모르타르의 전자기 특성에 대한 연구)

  • Kwon, Seung-Jun;Na, Ung-Jin;Feng, M.Q.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.565-571
    • /
    • 2008
  • Recently, the evaluation technique using NDT (Nondestructive Technique : NDT) is widely utilized because it makes little damage on RC (Reinforced Concrete : RC) structures. The techniques using electromagnetic properties (EM properties) are also attempted for the evaluation of the performance of concrete which is nonmetallic. For the economic manufacturing of concrete material, sea-sand is often used as aggregate, however, chloride ion in concrete has direct effects on steel corrosion and EM properties. In this study, OPC mortar specimens with 5 different chloride amount (0.0, 0.6, 1.2, 2.4, and $3.6kg/m^3$) and 3 different water-cement ratios (45%, 55%, and 65%) are prepared in order to investigate the EM properties corresponding to concrete properties. The EM properties of conductivity and dielectric constant are measured in the frequency range over 0.2~20 GHz. To facilitate the comparison of EM properties with chloride content, average values are taken respectively for the conductivity and dielectric constant measured over the 5~20 GHz frequency range. According to the results of this experiment, dielectric constant and conductivity are increased with lower W/C ratio and larger amount of chloride content.

The Effect of Grid Ratio and Material of Anti-scatter Grid on the Scatter-to-primary Ratio and the Signal-to-noise Ratio Improvement Factor in Container Scanner X-ray Imaging

  • Lee, Jeonghee;Lim, Chang Hwy;Park, Jong-Won;Kim, Ik-Hyun;Moon, Myung Kook;Lim, Yong-Kon
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.4
    • /
    • pp.197-204
    • /
    • 2017
  • Background: X-ray imaging detectors for the nondestructive cargo container inspection using MeV-energy X-rays should accurately portray the internal structure of the irradiated container. Internal and external factors can cause noise, affecting image quality, and scattered radiation is the greatest source of noise. To obtain a high-performance transmission image, the influence of scattered radiation must be minimized, and this can be accomplished through several methods. The scatter rejection method using an anti-scatter grid is the preferred method to reduce the impact of scattered radiation. In this paper, we present an evaluation the characteristics of the signal and noise according to physical and material changes in the anti-scatter grid of the imaging detector used in cargo container scanners. Materials and Methods: We evaluated the characteristics of the signal and noise according to changes in the grid ratio and the material of the anti-scatter grid in an X-ray image detector using MCNP6. The grid was composed of iron, lead, or tungsten, and the grid ratio was set to 2.5, 12.5, 25, or 37.5. X-ray spectrum sources for simulation were generated by 6- and 9-MeV electron impacts on the tungsten target using MCNP6. The object in the simulation was designed using metallic material of various thicknesses inside the steel container. Using the results of the computational simulation, we calculated the change in the scatter-to-primary ratio and the signal-to-noise ratio improvement factor according to the grid ratio and the grid material, respectively. Results and Discussion: Changing the grid ratios of the anti-scatter grid and the grid material decreased the scatter linearly, affecting the signal-to-noise ratio. Conclusion: The grid ratio and material of the anti-scatter grid affected the response characteristics of a container scanner using high-energy X-rays, but to a minimal extent; thus, it may not be practically effective to incorporate anti-scatter grids into container scanners.

Analysis of Mechanical and Ultrasonic Properties for the Evaluation of Material Degradation in Modified 9Cr-1Mo Steel (개량형 9Cr-1Mo 강의 열화도 평가를 위한 기계적 성질 및 초음파 특성 분석)

  • Hyun, Y.K.;Won, S.H.;Lee, S.H.;Son, Y.H.;Lee, J.H.;Kim, I.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.4
    • /
    • pp.198-204
    • /
    • 2010
  • Modified 9Cr-1Mo steels possess excellent high-temperature mechanical properties and are widely used in energy conversion industries. However, in-service materials degradation, such as softening, carbide-induced embrittlement, temper embrittlement, etc., can take place during long-term operation. Evolution of microstructure due to service exposure to high temperature has a strong effect on the performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarsening of $M_{23}C_6$-type carbides are the primary cause of degradation of mechanical properties such as toughness, hardness, tensile strength and creep resistance. This study was aimed at finding reliable parameter for assessing the integrity of modified 9Cr-1Mo steels. Characteristic parameters were attained between mechanical and ultrasonic properties.

Development of the Advanced NDI Technique Using an Alternating Current : the Evaluation of surface crack and blind surface crack and the detection of defects in a field component (교류전류를 이용한 새로운 비파괴탐상법의 개발;표면결함과 이면결함의 평가 및 실기 부재의 결함 검출)

  • Kim. H.;Lim, J.K.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.42-52
    • /
    • 1995
  • In the evaluation of aging degradation on the structural materials based on the fracture mechanics, the detection and size prediction of defect are very important. Aiming at nondestructive detection and size prediction ol defect with high accuracy and resolution, therefore, an lnduced Current Focusing Potential Drop(ICFPD) technique has been developed. The principle of this technique is to induce a focusing current at an exploratory region by an induction wire flowing an alternating current(AC) that is a constant ampere and frequency. Defects are assessed with the potential drops that are measured the induced current on the surface of metallic material by the potential pick-up pins. In this study, the lCFPD technique was applied for evaluating the location and size of the surface crack and blind crack made in plate specimens, and also for detecting the defects existing in valve, a field component, that were developed by SCC etc. during the service. The results of this present study show that surface crack and blind crack are able to defect with potential drop. these cracks are distinguished with the distribution of potential drop, and the crack depths can be estimated with each normalized potential drop that are parameters estimating the depth of each type crack. In the field component, the defects estimated by experiment result correspond with those in the cutting face of the measuring point within a higher sensitivity.

  • PDF

Evaluation of Nondestructive Diagnosis and Material Characteristics of Stone Lantern at Damyang Gaeseonsaji Temple Site in Korea

  • Lee, Chan Hee;Araki, Naruto
    • Journal of Conservation Science
    • /
    • v.35 no.4
    • /
    • pp.279-293
    • /
    • 2019
  • The stone lantern of the Damyang Gaeseonsaji temple site is a cultural heritage built during the Unified Silla period (AD 868). The reason for its value as a cultural property is due to wittern the background and the period created on inscription of the lamp stone engraved by letters. The stone lantern consists of two types of lithic tuffs for the 23 original properties, the replaced stones in 1991, and the biotite granite for its ground stones replaced in 2005. The lithic tuffs selected as the replacement parts in 1991 and 2017 have been examined and got to properties of hardly exposure moisture as well as very similar geochemical characteristics. There were various types of physical deterioration of the stone properties and structural cracks; in particular, on the northern side of the stylobates. Chemical and biological deterioration can be identified as black, white, and brown discolorations as well as by the presence of lichens, bryophytes, and herbaceous plants. In the evaluation of the physical properties of the stone lantern, the mean and maximum ultrasonic velocities were found to be similar in each direction. However, the lowest velocity on the east and south sides were found to be lower than those of other stone properties. It was found that physical damage to the stylobates resulted from water expansion in a freeze-to-thaw phenomena related to water content. Therefore, dismantling repair was carried out in the protection facility to restrict further water supply to the stone as much as possible.

Compressive Strength Estimation Technique of Underwater Concrete Structures using Both Rebound Hardness and Ultrasonic Pulse Velocity Values (반발경도와 초음파속도를 이용한 수중 콘크리트 구조물의 압축강도 예측 기술)

  • Shin, Eun-Seok;Lee, Ji-Sung;Park, Seung-Hee;Han, Sang-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.118-125
    • /
    • 2014
  • As the earth's current global warming has caused elevation of sea water temperature, size of storms is foreseen to increase and consequently large damages on port facilities are to be expected. In addition, due to the improved processing efficiency of port cargo volume and increasing necessity for construction of eco-friendly port, demands for various forms of port facilities are anticipated. In this study, two kinds of nondestructive evaluation (NDE) techniques (rebound hardness and ultrasonic pulse velocity methods) are investigated for the effective maintenance of smart green harbor system. A new methodology to estimate the underwater concrete strengths is proposed and its feasibility is verified throughout a series of experimental works.

Evaluation of Microscopic Damage to TIG Welded Carbon Steel using Acoustic Emission and Ultrasonic Test (음향방출과 초음파를 이용한 TIG 용접탄소강의 미시적 손상평가)

  • Lee, Joon-Hyun;Lee, Jin-Kyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.5-10
    • /
    • 2012
  • In this study, carbon steel (A53) is used as the material for the pipes in a marine plant and ship industry. Welds are necessary to join the carbon steel, and the effect of this welding on the properties of the carbon steel has been studied by many researchers. In this study, the dynamic behavior of welded carbon steel was studied using an acoustic emission (AE) technique, which is a nondestructive test. There are numerous AE parameters that can be used to analyze the damage behavior of carbon steel by external loading. The AE parameters of energy, cumulative count, amplitude, and AE event were used, and each parameter was differentiated according to the degree of damage to the carbon steel. The energy showed a high level at the elastic range of the load curve, while the amplitude had the highest value at the hardening region. The cumulative count showed a growth tendency similar to the loading curve. In addition, an ultrasonic technique and hardness test were applied to evaluate the mechanical properties according to the base zone, HAZ region, and weld zone of the weld specimen. The velocity and attenuation ratio showed little change between zones, and an evaluation of the ultrasonic waves on each zone of the specimen was found to be a useful method to clarify the mechanical properties of the carbon steel.