DOI QR코드

DOI QR Code

A Study on Electromagnetic Properties in OPC Mortar with Different Chloride Content

염화물을 혼입한 OPC 모르타르의 전자기 특성에 대한 연구

  • Received : 2008.02.12
  • Accepted : 2008.05.14
  • Published : 2008.07.31

Abstract

Recently, the evaluation technique using NDT (Nondestructive Technique : NDT) is widely utilized because it makes little damage on RC (Reinforced Concrete : RC) structures. The techniques using electromagnetic properties (EM properties) are also attempted for the evaluation of the performance of concrete which is nonmetallic. For the economic manufacturing of concrete material, sea-sand is often used as aggregate, however, chloride ion in concrete has direct effects on steel corrosion and EM properties. In this study, OPC mortar specimens with 5 different chloride amount (0.0, 0.6, 1.2, 2.4, and $3.6kg/m^3$) and 3 different water-cement ratios (45%, 55%, and 65%) are prepared in order to investigate the EM properties corresponding to concrete properties. The EM properties of conductivity and dielectric constant are measured in the frequency range over 0.2~20 GHz. To facilitate the comparison of EM properties with chloride content, average values are taken respectively for the conductivity and dielectric constant measured over the 5~20 GHz frequency range. According to the results of this experiment, dielectric constant and conductivity are increased with lower W/C ratio and larger amount of chloride content.

최근들어 구조물에 직접적인 손상을 주지 않는 비파괴평가를 통한 콘크리트 구조물의 성능평가에 대한 연구가 다양하게 진행되고 있으며, 특히 비자성체인 시멘트계 재료의 특성을 이용하여, 전자기 특성을 콘크리트에 적용하려는 연구가 시도되고 있다. 경제적인 콘크리트 생산을 위하여 해사가 잔골재로서 많이 사용되는 현실을 감안할 때, 철근의 부식에 직접적으로 관여하는 콘크리트 내부 염화물이 콘크리트의 재료적 특성에 미치는 영향 또한 중요한 연구과제 중의 하나이며, 본 연구에서는 이와 연계한 전자기 특성 변화를 중점적으로 살펴보고자 한다. 본 연구에서는 5가지의 다른 염화물 함유량(0.0, 0.6, 1.2, 2.4, $3.6kg/m^3$)이 포함된 보통포틀랜트시멘트(Ordinary Portland Cement : OPC) 모르타르를 이용하여 유전상수를 측정하고 그 변화를 분석하였다. 각 시편은 3가지 물-시멘트비(45%, 55%, 65%)를 가지도록 하였으며, 0.2~20 GHz의 영역에서 유전상수(dielectric constant)와 전도율(conductivity)이 측정되었다. 전자기 특성과 염화물량의 변화를 용이하도록 하기 위하여, 5~20 GHz 영역에서의 전도율 및 유전상수의 평균값이 사용되었다. 각각의 전자기 특성들은 물-시멘트비가 낮을수록 높게 평가되었으며, 염화물량의 증가에 따라 측정값이 증가하였다.

Keywords

References

  1. 임홍철, 정성훈(2000) 비파괴 시험을 위한 콘크리트의 유전상수의 측정, 한국콘크리트학회 논문집, 한국콘크리트학회, 제12권, 3호, pp. 115-123
  2. 정성훈, 임홍철(1998) 비파괴 실험을 위한 모르타르의 전자기적 특성 측정 한국콘크리트학회 가을학술발표회 논문집, 한국콘크리트학회, Vol. 10, No. 2 pp. 779-784
  3. Brown, P.W., Harner, C.L., and Prosen E.J. (1986) The effect of inorganic salts on tricalcium silicate hydration, Cement and Concrete Research, Vol. 16, pp. 17-23 https://doi.org/10.1016/0008-8846(86)90063-3
  4. Chrisp, T.M., McCarter, W.J., Starrs, G., Basheer, P.A.M., and Blewett, J. (2002) Depth-related variation in conductivity to study cover zone concrete during wetting and drying, Cement and Concrete Research, Vol. 24, pp. 415-426 https://doi.org/10.1016/S0958-9465(01)00073-7
  5. Feng, M.Q., Kim, Y.J., and De Flaviis, F.D. (2001) Use of microwaves for damage detection of FRP-wrapped concrete structures, Journal of Engineering Mechanics (ASCE), Vol. 128, pp. 172-183 https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(172)
  6. Feng, S. and Sen, P.N. (1985) Geometrical model of conductive and dielectric properties of partially saturated rocks, Journal of Applied Physics, Vol. 58, pp. 3236-3243 https://doi.org/10.1063/1.335804
  7. Garboczi, E.J., Schwartz, L.M., and Bentz, D.P. (1995) Modelling the D.C. electrical conductivity of mortar, Material Research Symposium Proc. Vol. 370, pp. 429-436
  8. Glanvile, J. and Nevile, A. (1995) Prediction of concrete durability, Proceedings of STATS 21st Anniversary Conference, E&FN SPON, pp. 16-36
  9. Halabe, U.B. (1990) Condition assessment of reinforced concrete structures using electromagnetic waves, Doctoral thesis, Department of Civil Eng. MIT, Cambridge
  10. Halabe, U.B., Sotoodehnia, A., Maser, K.R., and Kausel, E.A. (1993) Modeling the electromagnetic properties of concrete, ACI Material Journal, Vol. 90, pp. 552-563
  11. Kim, Y.J., Jofre, L., De Flaviis, F.D., and Feng, M.Q. (2002) Microwave reflection tomography array for damage detection of concrete structures, Proc of IEEE MTT-S Int. Microwave Symposium Digest, Seattle, WA, June 2-7, pp. 651-654
  12. Korean Standard (2005) Method of test for compressive strength of concrete: KSF 2405
  13. McCarter, W.J., Chrisp, T.M., and Starrs, G. (1999) The early hydration of alkali-activated slag : developments in monitoring techniques, Cement and Concrete Composites, Vol. 21, pp. 277-283 https://doi.org/10.1016/S0958-9465(99)00007-4
  14. McCarter, W.J., Chrisp, T.M., Starrs, G., and Blewett, J. (2003) Characterization and monitoring of cement-based systems using intrinsic electrical property measurements, Cement and Concrete Research, Vol. 33, pp. 197-206 https://doi.org/10.1016/S0008-8846(02)00824-4
  15. McCarter, W.J., Starrs, G., and Chrisp, T.M. (2000) Electrical conductivity, diffusion, and permeability of portland cement-based mortar, Cement and Concrete Research, Vol. 30, pp. 1395-1400 https://doi.org/10.1016/S0008-8846(00)00281-7
  16. McCarter,W.J., Starrs, G., and Chrisp, T.M. (2004) The complex impedance response of fly-ash cement revisited, Cement and Concrete Research, Vol. 34, pp. 1837-1843 https://doi.org/10.1016/j.cemconres.2004.01.013
  17. Neithalath, N. (2007) Extracting the performance prediction of enhanced porosity concrete from electrical conductivity spectra, Cement and Concrete Research, Vol. 37, pp. 796-804 https://doi.org/10.1016/j.cemconres.2007.02.018
  18. Nyshadham, A., Sibbad, C.L., and Stuchly, S.S. (1992) Permittivity measurement using open-ended sensor and reference liquid calibration - an uncertainty analysis, IEEE Transactions on Microwave Theory and Techniques, MTT-40, pp. 305-313
  19. Rhim, H.C. (2001) Condition monitoring of deteriorating concrete dams using radar, Cement and Concrete Research, Vol. 31, pp. 363-373 https://doi.org/10.1016/S0008-8846(00)00496-8
  20. Rhim, H.C. and Buyukozturk, O. (1998) Electromagnetic properties of concrete at microwave frequency range, ACI Material Journal. Vol. 95, pp. 262-271
  21. Rhim, H.C., Kim, Y.J., Feng, M.Q. Woo, S.K. and Song, Y.C. (2004) Measurements of electromagnetic properties of concrete and fiber reinforced polymer for nondestructive testing, US-Korea Joint Seminar/Workshop on Smart Structures Technologies, Sheraton Walker Hill Hotel, Seoul, Korea, September 2, pp. 14-18
  22. Shi, C., Stegemann, J.A., and Caldwell, E.J. (1998) Effect of supplementary cementing materials on the specific conductivity of pore solution and its implications on the rapid chloride permeability test (AASHTO T277 and ASTM C1202) results, ACI Material Journal, Vol. 95, pp. 389-394
  23. Song, H.W., Cho, H.J., Park, S.S., Byun K.J., and Maekawa K. (2001) Early-age cracking resistance evaluation of concrete structure. Concrete Science Engineering Vol. 3, pp. 62-72
  24. Soutsos, M.N., Bungey, J.H. Millard, S.G., Shaw, M.R., and Patterson, A. (2001) Dielectric properties of concrete and their influence on radar testing, NDT&E International, Vol. 34, pp. 419-425 https://doi.org/10.1016/S0963-8695(01)00009-3
  25. Suryavanshi, A.K., Scantlebury, J.D., and Lyon, S.B. (1995) Pore size distribution of OPC & SRPC mortars in presence of chlorides, Cement and Concrete Research, Vol. 25, pp. 980-988 https://doi.org/10.1016/0008-8846(95)00093-R
  26. Wittmann, F.H. (1975), Micro wave absorption of hardened cement paste, Cement and Concrete Research, Vol. 5, pp. 63-71 https://doi.org/10.1016/0008-8846(75)90108-8