• Title/Summary/Keyword: non-uniqueness

Search Result 148, Processing Time 0.025 seconds

A GENERAL UNIQUENESS RESULT OF AN ENDEMIC STATE FOR AN EPIDEMIC MODEL WITH EXTERNAL FORCE OF INFECTION

  • Cha, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.597-608
    • /
    • 2007
  • We present a general uniqueness result of an endemic state for an S-I-R model with external force of infection. We reduce the problem of finding non-trivial steady state solutions to that of finding zeros of a real function of one variable so that we can easily prove the uniqueness of an endemic state. We introduce an assumption which was usually used to show stability of a non-trivial steady state. It turns out that such an assumption adopted from a stability analysis is crucial for proving the uniqueness as well, and the assumption holds for almost all cases in our model.

Uniqueness Criteria for Signal Reconstruction from Phase-Only Data (위상만을 이용한 신호복원의 유일성 판단법)

  • 이동욱;김영태
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.2
    • /
    • pp.59-64
    • /
    • 2001
  • In this paper, we propose an alternate method for determining the uniqueness of the reconstruction of a complex sequence from its phase. Uniqueness constraints could be derived in terms of the zeros of a complex polynomial defined by the DFT of the sequence. However, rooting of complex polynomials of high order is a very difficult problem. Instead of finding zeros of a complex polynomial, the proposed uniqueness criteria show that non-singularity of a matrix can guarantee the uniqueness of the reconstruction of a complex sequence from its phase-only data. It has clear advantage over the rooting method in numerical stability and computational time.

  • PDF

Investigation on Method Avoiding Non-uniqueness of Direct Boundary Element Method in Acoustic Wave Radiation Problem (음향방사문제에서 직접경계요소법의 비유일성 회피방법에 관한 고찰)

  • Kim, Kook-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2328-2333
    • /
    • 2010
  • A direct boundary element method(DBEM) is widely applied for various acoustic wave problems. But this method has numerically non-unique solutions around the eigenfrequencies of the interior Dirichlet problem for the region enveloped with the acoustic boundary. A CHIEF method had been generally adopted to resolve the non-uniqueness problem and a new technique called ICA-Ring method has been suggested recently. In this paper, the characteristics of two techniques for avoiding the non-uniqueness of DBEM are examined and numerical codes embodying both techniques are developed. Numerical calculations are also carried out for an uniformly pulsating sphere, of which the results are investigated by including the comparisons with theoretical solutions.

Uniqueness of Certain Non-Linear Differential Polynomials Sharing 1-Points

  • Banerjee, Abhijit
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.1
    • /
    • pp.43-58
    • /
    • 2011
  • Using the notion of weighted sharing of values we study the uniqueness of meromorphic functions when certain non-linear differential polynomials share the same 1-points. Though the main concern of the paper is to improve a result of Fang [5] but as a consequence of the main result we improve and supplement some former results of Lahiri-Sarkar [16], Fang-Fang[6] et. al.

A NOTE ON UNIQUENESS AND STABILITY FOR THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT

  • Kang, Hyeon-Bae;Seo, Jin-Keun
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.781-791
    • /
    • 2001
  • We consider the inverse conductivity problem to identify the unknown conductivity $textsc{k}$ as well as the domain D. We show hat, unlike the case when $textsc{k}$ is known, even a two or three dimensional ball may not be identified uniquely if the conductivity constant $textsc{k}$ is not known. We find a necessary and sufficient condition on the Cauchy data (u│∂Ω, g) for the uniqueness in identification of $textsc{k}$ and D. We also discuss on failure of stability.

  • PDF