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1. Introduction

Let f and g be two non-constant meromorphic functions defined in the open
complex plane C. For some a ∈ C∪{∞}, if the zero of f − a and g− a have the
same locations as well as same multiplicities, we say that f and g share the value
a CM (counting multiplicities). If we do not consider the multiplicities, then f
and g are said to share the value a IM (ignoring multiplicities). Throughout
the paper the elemental and standard notations of Nevanlinna’s Value Distri-
bution Theory of meromorphic functions which are discussed in ([2],[9]) have
been adopted. A meromorphic function a is said to be a small with respect to f
provided that T (r, a) = S(r, f), that is T (r, a) = o{T (r, f)} as r → ∞, outside a
possible exceptional set of finite linear measure. Also, we use I to denote any set
of infinite linear measure of 0 < r < ∞. If α ≡ α(z) is a small function, we de-
fine that f and g share α CM (IM) according as f−α and g−α share 0 CM (IM).

By using the definition of L(z) to denote an arbitrary polynomial of degree
n, i.e.,

L(z) = anz
n+an−1z

n−1+ . . .+a0 = an(z−c1)
l1 +an−1(z−c2)

l2 + . . .+(z−cs)
ls

(1)
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where ai, i = 0, 1, . . . , n, an ̸= 0, and cj , j = 1, 2, ..., s, are finite complex
number constants; c1, c2, ..., cs are all distinct zeros of L(z), l1, l2, ..., ls. s, n
are all positive integers satisfying the equality

l1 + l2 + . . .+ ls = n and l = max {l1, l2 . . . ls} (2)

In 2016, Harina P. Waghamore and Rajeshwari S.[8] studied the existence of
solutions for [L(f)](k) and the corresponding uniqueness theorem and obtained
the following results.

Theorem 1.1. [8] Let f and g be two non - constant meromorphic functions
and let n, k, l be three positive integers. If [L(f)](k) and [L(g)](k) share (1, l),
and one of the following conditions holds:
(i) l ≥ 2 and (k + 8)l > (k + 7)n+ 3k + 8;
(ii) l = 1 and (2k + 10)l > (2k + 9)n+ 5k + 11;
(iii) l = 0 and (4k + 14)l > (4k + 13)n+ 9k + 14.
then either f = b1e

bz+c, g = b2e
−bz+c or f and g satisfy the algebraic equation

R(f, g) ≡ 0 where b1, b2 and b are three constants such that (−1)k(b1b2)
n(nb)2k =

1 and R(ω1, ω2) = L(ω1)− L(ω2).

Theorem 1.2. [8] Let f and g be two non - constant entire functions, and let
n, k, l be three positive integers. If [L(f)](k) and [L(g)](k) share (1, l) and one
of the following conditions holds:
(i) l ≥ 2 and 4l > 3n+ 3k + 4;
(ii) l = 1 and 11l > 9n+ 8k + 9;
(iii) l = 0 and 6l > 5n+ 5k + 7.
then either f = b1e

bz+c, g = b2e
−bz+c or f and g satisfy the algebraic equation

R(f, g) ≡ 0, where b1, b2 and b are three constants such that (−1)k(b1b2)
n(nb)2k =

1 and R(ω1, ω2) = L(ω1)− L(ω2).

2. Definitions

In 2001, Lahiri [4] introduced a gradation of sharing of values or sets which is
known as weighted sharing. Below we are recalling the notion.

Definition 2.1. ( [3], [4]) Let k be a non-negative integer or infinity. For
a ∈ C∪{∞} we denote by Ek(a, f) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ek(a, f) = Ek(a, g), we say that f, g share the value a with weight k. We write
f, g share (a, k) to mean that f, g share the value a with weight k. Also we
note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)
respectively.

Definition 2.2. (see [4]) For S ⊂ C ∪ {∞} we define Ef (S; k) as Ef (S; k) =
∪a∈SEk(a, f), where k is a non-negative integer or infinity.

If Ef (S, k) = Eg(S, k) then we say that f and g share the set S with weight
k and write f and g share (S, k).
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In order to address our problem we require a linear differential polynomial of
a special form.

Definition 2.3. ( [6], [7]) Let f be a non - constant meromorphic function.
Then we denote L(f) a Linear Differential Polynomial of the form: L(f) = f (q)

for q = 1, 2, 3 and L(f) =

q−3∑
j=1

ajf
(j) + f (q) for q ≥ 4, where a1, a2, ...aq−3 are

constants.

3. Lemmas

In this segment, we present a few lemmas which will be helpful to prove our
main results.

Lemma 3.1. [12] Let f be a non - constant meromorphic function, let k be a
positive integer, and let c be a non - zero finite complex number. Then

T (r, f) ≤ N(r, f) +N(r,
1

f
) +N

(
r,

1

f (k) − c

)
−N

(
r,

1

f (k+1)

)
+ S(r, f)

≤ N(r, f) +Nk+1(r,
1

f
) +N

(
r,

1

f (k) − c

)
−N0

(
r,

1

f (k+1)

)
+ S(r, f).

where N0

(
r, 1

f(k+1)

)
is the counting function which only counts those points such

that f (k+1) = 0 but f(f (k) − c) ̸= 0.

Lemma 3.2. ( [8],[11]) Let f be a non - constant meromorphic function, let k
be a positive integer, then

Np

(
r,

1

f (k)

)
≤ Np+k

(
r,

1

f

)
+ kN(r, f) + S(r, f)

≤ (p+ k)N

(
r,

1

f

)
+ kN(r, f) + S(r, f).

and clearly N
(
r, 1

f(k)

)
= N1

(
r, 1

f(k)

)
.

Lemma 3.3. [5] Let f and g be two non - constant entire functions, and let k
be positive integer. If f (k) and g(k) share (1, l) (l = 0, 1, 2). Then
(i)If l = 0,

Θ(0, f) + δk(0, f) + δk+1(0, f) + δk+1(0, g) + δk+2(0, f) + δk+2(0, g) > 5.

then either f (k)g(k) = 1 or f ≡ g;
(ii) If l = 1,

1

2
[Θ(0, f)+δk(0, f)+δk+2(0, f)]+δk+1(0, f)+δk+1(0, g)+Θ(0, g)+δk(0, g) >

9

2
.
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then either f (k)g(k) = 1 or f ≡ g;
(iii) If l ≥ 2,

Θ(0, f) + δk(0, f) + δk+1(0, f) + δk+2(0, g) > 3.

then either f (k)g(k) = 1 or f ≡ g.

Lemma 3.4. [7] Let f and g be two non - constant meromorphic functions,
k(≥ 1) and (l ≥ 0) be integers. If f (k) and g(k) share (1,l) (l=0,1, 2).Then
(i) If l ≥ 2,

(k+2)Θ(∞, f) + 2Θ(∞, g) +Θ(0, f) +Θ(0, g) + δk+1(0, f) + δk+1(0, g) > k+7.

then either f (k)g(k) = 1 or f ≡ g;
(ii) If l = 1,

(2k+3)Θ(∞, f)+2Θ(∞, g)+Θ(0, f)+Θ(0, g)+δk+1(0, f)+δk+1(0, g)+δk+2(0, f) > 2k+9.

then either f (k)g(k) = 1 or f ≡ g;
(iii) If l = 0,

(2k+3)Θ(∞, f)+(2k+4)Θ(∞, g)+Θ(0, f)+Θ(0, g)+2δk+1(0, f)+3δk+1(0, g) > 4k+13.

then either f (k)g(k) = 1 or f ≡ g.

Lemma 3.5. [1] Let f(z) be a non - constant entire function and let k(≥ 2) be
a positive integer. If f(f (k) ̸= 0), then f = eaz+b, where a and b are constants.

Lemma 3.6. [5] Let f be a non - constant meromorphic function and n, l be a
positive integers with n ≥ l + 2, if a ∈ C \ {0} then

N(r, 0;L(fn)) ≤ (l + 1)N(r, 0; f) + lN(r, f) + S(r, f).

N(r, L(fn)) = N(r, f).

Lemma 3.7. [5] Let f and g be two non - constant meromorphic functions
sharing (∞, 0) such that L(fn)L(gn) = α, where α is a non - zero constant and
n ≥ 1 + l. Then f(z) = c1 exp(cz) and g(z) = c2 exp(−cz), where

(c1c2)
n

{
A

q−3∑
j=1

aj(nc)
j + (nc)q

}{
A

q−3∑
j=1

aj(−nc)j + (−nc)q

}
= α

and A = 0 if q = 1, 2, 3 and A = 1 if q ≥ 4.

4. Main results

In this paper, we study the existence of solutions for [L(fn)](k)and the cor-
responding uniqueness theorems. Thus, we obtain the following results as a
generalization of the theorems presented above.
We now state the main results of the paper.
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Theorem 4.1. Let f and g be two non - constant meromorphic functions, and
let n, k and l be three positive integers. If [L(fn)](k) and [L(gn)](k) share (1, l),
and one of the following conditions holds:
(i) l ≥ 2 and n > 4l(k + 2) + 3k + 8;
(ii) l = 1 and n > 6l(k + 2) + 5k + 11;
(iii) l = 0 and n > 2l(5k + 7) + 9k + 14.
Then
(I) L(fn) = ωL(gn), where ωd = 1.
(II) f(z) = c1e

cz and g(z) = c2e
−cz where

(c1c2)
n

{
A

q−3∑
j=1

aj(nc)
j + (nc)q

}{
A

q−3∑
j=1

aj(−nc)j + (−nc)q

}
= ω

and ωd = 1 and A = 0 if q = 1, 2, 3 and A = 1 if q ≥ 4.

Proof. Let L(fn) is given by,

L(fn) = fn−lP

where P is a differential polynomial in f of degree atmost l and n ≥ l + 1
Without loss of generality, we can assume that an = 1, l = l1 and c = c1. This
yields

Θ(0, L(fn)) = 1− lim sup
r→∞

N
(
r, 1

L(fn)

)
T (r, L(fn))

≥ 1− lim sup
r→∞

(l + 1)N(r, 0; f) + lN(r, f) + S(r, f)

T (r, fn−l) + T (r, P )

≥ 1− lim sup
r→∞

(l + 1)T (r, f) + lT (r, f)

(n− l + l)T (r, f)

≥ 1− lim sup
r→∞

(2l + 1)T (r, f)

nT (r, f)

≥ 1− 2l + 1

n
.

(3)

Similarly, we get

Θ(0, L(gn)) ≥ 1− 2l + 1

n
. (4)
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Moreover, we have

Θ(∞, L(fn)) = 1− lim sup
r→∞

N (r, L(fn))

T (r, L(fn))

≥ 1− lim sup
r→∞

N(r, f)

T (r, fn−l) + T (r, P )

≥ 1− lim sup
r→∞

N(r, f)

(n− l + l)T (r, f)

≥ 1− lim sup
r→∞

T (r, f)

nT (r, f)

≥ 1− 1

n
.

(5)

Similarly, we get

Θ(∞, L(gn)) ≥ 1− 1

n
. (6)

Also, we have,

δk(0, L(f
n)) = 1− lim sup

r→∞

Nk (r, L(f
n))

T (r, L(fn))

≥ 1− lim sup
r→∞

kN
(
r, 1

L(fn)

)
T (r, fn−l) + T (r, P )

≥ 1− k(2l + 1)

n
.

(7)

Similarly, we get

δk(0, L(g
n)) ≥ 1− k(2l + 1)

n
. (8)

δk+1(0, L(f
n)) ≥ 1− (k + 1)(2l + 1)

n
. (9)

δk+1(0, L(g
n)) ≥ 1− (k + 1)(2l + 1)

n
. (10)

δk+2(0, L(f
n)) ≥ 1− (k + 2)(2l + 1)

n
. (11)

δk+2(0, L(g
n)) ≥ 1− (k + 2)(2l + 1)

n
. (12)

Case I. If l ≥ 2 and from (3) - (12) and also from Lemma 3.4, we get

(k + 2)Θ(∞, f) + 2Θ(∞, f) + Θ(0, f) + Θ(0, g) + δk+1(0, f) + δk+1(0, g)

> k + 7.
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(k + 2)

(
1− 1

n

)
+ 2

(
1− 1

n

)
+

(
1− 2l + 1

n

)
+

(
1− 2l + 1

n

)

+ 1− (k + 1)(2l + 1)

n
+ 1− (k + 1)(2l + 1)

n
> k + 7.

n > 4l(k + 2) + 3k + 8.

Case II. If l = 1 and from (3) - (12) and also from Lemma 3.4, we get

(2k + 3)Θ(∞, f) + 2Θ(∞, g) + Θ(0, f) + Θ(0, g) + δk+1(0, f) + δk+1(0, g) + δk+2(0, f)

> 2k + 9.

(2k + 3)

(
1− 1

n

)
+ 2

(
1− 1

n

)
+

(
1− 2l + 1

n

)
+

(
1− 2l + 1

n

)

+ 1− (k + 1)(2l + 1)

n
+ 1− (k + 1)(2l + 1)

n

+ 1− (k + 2)(2l + 1)

n
> 2k + 9.

n > 6l(k + 2) + 5k + 11.

Case III. If l = 0 and from (3) - (12) and also from Lemma 3.4, we get

(2k+3)Θ(∞, f)+(2k+4)Θ(∞, g)+Θ(0, f)+Θ(0, g)+2δk+1(0, f)+3δk+1(0, g) > 4k+13.

(2k + 3)

(
1− 1

n

)
+ (2k + 4)

(
1− 1

n

)
+

(
1− 2l + 1

n

)
+

(
1− 2l + 1

n

)

+ 2

(
1− (k + 1)(2l + 1)

n

)
+ 3

(
1− (k + 1)(2l + 1)

n

)
> 4k + 13

n > 2l(5k + 7) + 9k + 14.

Case IV. Let F ≡ G.Then L(fn) = ωL(gn), where ωd = 1. This is possibility
I of the theorem.

Case V. Let FG ≡ 1. Then L(fn)L(gn) = ω where ωd = 1.Then by Lemma
3.7 we get the possibility II of the theorem. This proves the theorem.

□

Theorem 4.2. Let f and g be two non - constant entire functions, and let
n, k, l, m are positive integers. If [L(fn)](k) and [L(gn)](k) share (1, l), and
one of the following conditions holds:
(i) l ≥ 2 and n > (6k + 8) + 3k + 4;
(ii) l = 1 and 2n > (16k + 18)l + 8k + 9;
(iii) l = 0 and n > (10k + 14)l + 5k + 7.
Then
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(I) L(fn) = ωL(gn) where ωd = 1.
(II) f(z) = c1e

cz and g(z) = c2e
−cz where

(c1c2)
n

{
A

q−3∑
j=1

aj(nc)
j + (nc)q

}{
A

q−3∑
j=1

aj(−nc)j + (−nc)q

}
= ω

and ωd = 1 and A = 0 if q = 1, 2, 3 and A = 1 if q ≥ 4.

Proof. Let L(fn) is given by

L(fn) = fn−lP

where P is a differential polynomial in f of degree atmost l and n ≥ l + 1.
Without loss of generality, we can assume that an = 1, l = l1 and c = c1. This
yields

Θ(0, L(fn)) = 1− lim sup
r→∞

N
(
r, 1

L(fn)

)
T (r, L(fn))

≥ 1− lim sup
r→∞

(l + 1)N(r, 0; f) + lN(r, f) + S(r, f))

T (r, fn−l) + T (r, P )

≥ 1− lim sup
r→∞

(l + 1)T (r, f) + lT (r, f)

(n− l + l)T (r, f)

≥ 1− lim sup
r→∞

(2l + 1)T (r, f)

nT (r, f)

≥ 1− 2l + 1

n
.

(13)

Similarly, we get

Θ(0, L(gn)) ≥ 1− 2l + 1

n
. (14)

Moreover, we have

Θ(∞, L(fn)) = 1− lim sup
r→∞

N (r, L(fn))

T (r, L(fn))

≥ 1− lim sup
r→∞

N(r, f)

T (r, fn−l) + T (r, P )

≥ 1− lim sup
r→∞

N(r, f)

(n− l + l)T (r, f)

≥ 1− lim sup
r→∞

T (r, f)

nT (r, f)

≥ 1− 1

n
.

(15)
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Similarly, we get

Θ(∞, L(gn)) ≥ 1− 1

n
. (16)

Also, we have

δk(0, L(f
n)) = 1− lim sup

r→∞

Nk (r, L(f
n))

T (r, L(fn))

≥ 1− lim sup
r→∞

kN
(
r, 1

L(fn)

)
T (r, fn−l) + T (r, P )

≥ 1− k(2l + 1)

n
.

(17)

Similarly, we get

δk(0, L(g
n)) ≥ 1− k(2l + 1)

n
. (18)

δk+1(0, L(f
n)) ≥ 1− (k + 1)(2l + 1)

n
. (19)

δk+1(0, L(g
n)) ≥ 1− (k + 1)(2l + 1)

n
. (20)

δk+2(0, L(f
n)) ≥ 1− (k + 2)(2l + 1)

n
. (21)

δk+2(0, L(g
n)) ≥ 1− (k + 2)(2l + 1)

n
. (22)

Case I. If l ≥ 2 and from (13) - (22) and also from Lemma 3.3, we get

Θ(0, f) + δk(0, f) + δk+1(0, f) + δk+2(0, g) > 3.(
1− 2l + 1

n

)
+

(
1− k(2l + 1)

n

)
+

(
1− (k + 1)(2l + 1)

n

)

+

(
1− (k + 2)(2l + 1)

n

)
> 3.

n > 2l(3k + 4) + 3k + 4.

Case II. If l = 1 and from (13) - (22) and also from Lemma 3.3, we get

1

2
[Θ(0, f)+δk(0, f)+δk+2(0, f)]+δk+1(0, f)+δk+1(0, g)+Θ(0, g)+δk(0, g) >

9

2
,
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1

2

[
1− 2l + 1

n
+ 1− k(2l + 1)

n
+ 1− (k + 2)(2l + 1)

n

]
+

(
1− (k + 1)(2l + 1)

n

)
+

(
1− (k + 1)(2l + 1)

n

)

+

(
1− 2l + 1

n

)
+

(
1− k(2l + 1)

n

)
>

9

2
.

2n > 2l(8k + 9) + 8k + 9.

Case III. If l = 0 and from (13) - ((22)) and also from Lemma 3.3, we get

Θ(0, f) + δk(0, f) + δk+1(0, f) + δk+1(0, g) + δk+2(0, f) + δk+2(0, g) > 5.

(
1− 2l + 1

n

)
+

(
1− k(2l + 1)

n

)
+

(
1− (k + 1)(2l + 1)

n

)
+

(
1− (k + 1)(2l + 1)

n

)

+

(
1− (k + 2)(2l + 1)

n

)
+

(
1− (k + 2)(2l + 1)

n

)
> 5.

n > 2l(5k + 7) + 5k + 7.

Case I. Let F ≡ G. Then L(fn) = ωL(gn), where ωd = 1. This is possibility I
of the theorem.

Case II. Let FG ≡ 1. Then L(fn)L(gn) = ω where ωd = 1. Then by Lemma
3.7 we get the possibility II of the theorem.
This proves the theorem. □
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