A NOTE ON UNIQUENESS AND STABILITY FOR THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT

  • Published : 2001.07.01

Abstract

We consider the inverse conductivity problem to identify the unknown conductivity $textsc{k}$ as well as the domain D. We show hat, unlike the case when $textsc{k}$ is known, even a two or three dimensional ball may not be identified uniquely if the conductivity constant $textsc{k}$ is not known. We find a necessary and sufficient condition on the Cauchy data (u│∂Ω, g) for the uniqueness in identification of $textsc{k}$ and D. We also discuss on failure of stability.

Keywords

References

  1. Boll. Un. Mat. Ital. v.A23 Remark on a paper of Bellout and Friedman G. Alessandrini
  2. Trans. Amer. Math. Soc. v.347 Local uniquenessin the inverse problem with one measurement G. Alessandrini;V. Isakov;J. Powell
  3. Trans. Amer. Math. Soc. v.332 Inverse problem in potential theory H. Bellout;A. Friedman;V. Isakov
  4. Proc. Amer. Math. Soc. v.122 The inverse conductivity problem with one measurement: uniqueness for convex polyhedra B. Barcelo;E. Fabes;J. K. Seo
  5. Appl. Math. Sci. v.93 Inverse acoustic and electromagnetic scattering theory D. Colton;R. Kress
  6. Ann. of Math. v.116 L'integrale de Cauchy definit un operateur bournee sur L² pour courbes lipschitziennes R. R. Coifman;A. McIntosh;Y. Meyer
  7. Indian Univ. Math. J. v.38 On the uniqueness in the inverse conductivity problem with one measurement A. Friedman;V. Isakov
  8. Comm. Pure Appl. Math. v.41 On uniqueness of recorvery of discontinuous conductivity coefficient V. Isakov
  9. Math. Surveys and Monographs v.34 Inverse source problems
  10. Inverse Problems v.6 On the inverse conductivity problem with one measurement V. Isakov;J. Powell
  11. Inverse Problems v.12 Layer potential technique for the inverse conductivity problem H. Kang;J. K. Seo
  12. SIAM J. Appl. Math. v.59 no.3 Inverse conductivity problem with one measurement: uniqueness for balls in R³
  13. Inverse Problems v.13 Numerical identification of discontinuous conductivity coefficients H. Kang;J. K. Seo;D. Sheen
  14. J. Fourier Anal. Appl. v.2 no.3 A uniqueness result on inverse conductivity problem with two measurements J. K. Seo
  15. J. Funct. Anal. v.59 Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains G. C. Verchota