References
- Boll. Un. Mat. Ital. v.A23 Remark on a paper of Bellout and Friedman G. Alessandrini
- Trans. Amer. Math. Soc. v.347 Local uniquenessin the inverse problem with one measurement G. Alessandrini;V. Isakov;J. Powell
- Trans. Amer. Math. Soc. v.332 Inverse problem in potential theory H. Bellout;A. Friedman;V. Isakov
- Proc. Amer. Math. Soc. v.122 The inverse conductivity problem with one measurement: uniqueness for convex polyhedra B. Barcelo;E. Fabes;J. K. Seo
- Appl. Math. Sci. v.93 Inverse acoustic and electromagnetic scattering theory D. Colton;R. Kress
- Ann. of Math. v.116 L'integrale de Cauchy definit un operateur bournee sur L² pour courbes lipschitziennes R. R. Coifman;A. McIntosh;Y. Meyer
- Indian Univ. Math. J. v.38 On the uniqueness in the inverse conductivity problem with one measurement A. Friedman;V. Isakov
- Comm. Pure Appl. Math. v.41 On uniqueness of recorvery of discontinuous conductivity coefficient V. Isakov
- Math. Surveys and Monographs v.34 Inverse source problems
- Inverse Problems v.6 On the inverse conductivity problem with one measurement V. Isakov;J. Powell
- Inverse Problems v.12 Layer potential technique for the inverse conductivity problem H. Kang;J. K. Seo
- SIAM J. Appl. Math. v.59 no.3 Inverse conductivity problem with one measurement: uniqueness for balls in R³
- Inverse Problems v.13 Numerical identification of discontinuous conductivity coefficients H. Kang;J. K. Seo;D. Sheen
- J. Fourier Anal. Appl. v.2 no.3 A uniqueness result on inverse conductivity problem with two measurements J. K. Seo
- J. Funct. Anal. v.59 Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains G. C. Verchota