• Title/Summary/Keyword: non-linear differential equation

Search Result 135, Processing Time 0.024 seconds

A NEW APPROACH FOR NUMERICAL SOLUTION OF LINEAR AND NON-LINEAR SYSTEMS

  • ZEYBEK, HALIL;DOLAPCI, IHSAN TIMUCIN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.165-180
    • /
    • 2017
  • In this study, Taylor matrix algorithm is designed for the approximate solution of linear and non-linear differential equation systems. The algorithm is essentially based on the expansion of the functions in differential equation systems to Taylor series and substituting the matrix forms of these expansions into the given equation systems. Using the Mathematica program, the matrix equations are solved and the unknown Taylor coefficients are found approximately. The presented numerical approach is discussed on samples from various linear and non-linear differential equation systems as well as stiff systems. The computational data are then compared with those of some earlier numerical or exact results. As a result, this comparison demonstrates that the proposed method is accurate and reliable.

Some Identities Involving Euler Polynomials Arising from a Non-linear Differential Equation

  • Rim, Seog-Hoon;Jeong, Joohee;Park, Jin-Woo
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.553-563
    • /
    • 2013
  • We derive a family of non-linear differential equations from the generating functions of the Euler polynomials and study the solutions of these differential equations. Then we give some new and interesting identities and formulas for the Euler polynomials of higher order by using our non-linear differential equations.

Non-linear distributed parameter system estimation using two dimension Haar functions

  • Park Joon-Hoon;Sidhu T.S.
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.187-192
    • /
    • 2004
  • A method using two dimension Haar functions approximation for solving the problem of a partial differential equation and estimating the parameters of a non-linear distributed parameter system (DPS) is presented. The applications of orthogonal functions, including Haar functions, and their transforms have been given much attention in system control and communication engineering field since 1970's. The Haar functions set forms a complete set of orthogonal rectangular functions similar in several respects to the Walsh functions. The algorithm adopted in this paper is that of estimating the parameters of non-linear DPS by converting and transforming a partial differential equation into a simple algebraic equation. Two dimension Haar functions approximation method is introduced newly to represent and solve a partial differential equation. The proposed method is supported by numerical examples for demonstration the fast, convenient capabilities of the method.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

GROWTH OF SOLUTIONS OF NON-HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS

  • Pramanik, Dilip Chandra;Biswas, Manab
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2021
  • In this paper, we investigate the growth properties of solutions of the non-homogeneous linear complex differential equation L(f) = b (z) f + c (z), where L(f) is a linear differential polynomial and b (z), c (z) are entire functions and give some of its applications on sharing value problems.

ON ZEROS AND GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

  • Kumar, Sanjay;Saini, Manisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.229-241
    • /
    • 2020
  • For a second order linear differential equation f" + A(z)f' + B(z)f = 0, with A(z) and B(z) being transcendental entire functions under some restrictions, we have established that all non-trivial solutions are of infinite order. In addition, we have proved that these solutions, with a condition, have exponent of convergence of zeros equal to infinity. Also, we have extended these results to higher order linear differential equations.

A NUMERICAL SCHEME TO SOLVE NONLINEAR BSDES WITH LIPSCHITZ AND NON-LIPSCHITZ COEFFICIENTS

  • FARD OMID S.;KAMYAD ALl V.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.73-93
    • /
    • 2005
  • In this paper, we attempt to present a new numerical approach to solve non-linear backward stochastic differential equations. First, we present some definitions and theorems to obtain the conditions, from which we can approximate the non-linear term of the backward stochastic differential equation (BSDE) and we get a continuous piecewise linear BSDE correspond with the original BSDE. We use the relationship between backward stochastic differential equations and stochastic controls by interpreting BSDEs as some stochastic optimal control problems, to solve the approximated BSDE and we prove that the approximated solution converges to the exact solution of the original non-linear BSDE in two different cases.

A PETROV-GALERKIN METHOD FOR A SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION WITH NON-SMOOTH DATA

  • Zheng T.;Liu F.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.317-329
    • /
    • 2006
  • In this paper, a singularly perturbed ordinary differential equation with non-smooth data is considered. The numerical method is generated by means of a Petrov-Galerkin finite element method with the piecewise-exponential test function and the piecewise-linear trial function. At the discontinuous point of the coefficient, a special technique is used. The method is shown to be first-order accurate and singular perturbation parameter uniform convergence. Finally, numerical results are presented, which are in agreement with theoretical results.

ON EXACT SOLUTIONS FOR IMPULSIVE DIFFERENTIAL EQUATIONS WITH NON-INTEGER ORDERS

  • Choi, Sung Kyu;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.515-521
    • /
    • 2016
  • This paper deals with linear impulsive differential equations with non-integer orders. We provide the explicit representation of solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions.