• Title/Summary/Keyword: non-continuum

Search Result 174, Processing Time 0.031 seconds

Multi-scale model for coupled piezoelectric-inelastic behavior

  • Moreno-Navarro, Pablo;Ibrahimbegovic, Adnan;Damjanovic, Dragan
    • Coupled systems mechanics
    • /
    • v.10 no.6
    • /
    • pp.521-544
    • /
    • 2021
  • In this work, we present the development of a 3D lattice-type model at microscale based upon the Voronoi-cell representation of material microstructure. This model can capture the coupling between mechanic and electric fields with non-linear constitutive behavior for both. More precisely, for electric part we consider the ferroelectric constitutive behavior with the possibility of domain switching polarization, which can be handled in the same fashion as deformation theory of plasticity. For mechanics part, we introduce the constitutive model of plasticity with the Armstrong-Frederick kinematic hardening. This model is used to simulate a complete coupling of the chosen electric and mechanics behavior with a multiscale approach implemented within the same computational architecture.

Nonlocal heat conduction approach in biological tissue generated by laser irradiation

  • Abbas, Ibrahim A.;Abdalla, Aboelnour;Sapoor, Hussien
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • A novel nonlocal model with one thermal relaxation time is presented to investigates the thermal damages and the temperature in biological tissues generated by laser irradiations. To obtain these models, we used the theory of the non-local continuum proposed by Eringen. The thermal damages to the tissues are assessed completely by the denatured protein ranges using the formulations of Arrhenius. Numerical results for temperature and the thermal damage are graphically presented. The effects nonlocal parameters and the relaxation time on the distributions of physical fields for biological tissues are shown graphically and discussed.

Measuring sub-mm emission from local AGN host galaxies by JCMT SCUBA-2

  • Kim, Changseok;Woo, Jong-Hak;Chung, Aeree;Baek, Junhyun;Jadhav, Yashashree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.54.1-54.1
    • /
    • 2021
  • Observing sub-mm continuum emission from cold dust can play an important role in measuring star formation rates of galaxies, especially in the case of AGN host ones, since AGNs contaminate FIR fluxes by dust heating. To measure star formation rates, we observed total 49 local AGN host galaxies(z<0.2) by SCUBA-2 camera at James Clerk Maxwell Telescope(JCMT) at 450㎛ and 850㎛. We performed several tests with the observed images to determine whether each source is detected, and adopted 3s as the flux upper limit in non-detection cases. Using these measurements and FIR archival data, we modeled spectral energy distributions of the galaxies to estimate star formation rates. The effect of AGN activity on host galaxy star formation will be discussed.

  • PDF

Grain Growth Revealed by Multi-wavelength Analysis of Non-axisymmetric Substructures in the Protostellar Disk WL 17

  • Han, Ilseung;Kwon, Woojin;Aso, Yusuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2020
  • Disks around protostars are the birthplace of planets. The first step toward planet formation is grain growth from ㎛-sized grains to mm/cm-sized grains in a disk, particularly in dense regions. In order to study whether grains grow and segregate at the protostellar stage, we investigate the ALMA Band 3 (3.1 mm) and 7 (0.87 mm) dust continuum observations of the protostellar disk WL 17 in ρ Ophiuchus L1688 cloud. As reported in a previous study, the Band 3 image shows substructures: a narrow ring and a large central hole. On the other hand, the Band 7 image shows different substructures: a non-axisymmetric ring and an off-center hole. The two-band observations provide a mean spectral index of 2.3, which suggests the presence of mm/cm-sized large grains. Its non-axisymmetric distribution may imply dust segregation between small and large grains. We perform radiative transfer modeling to examine the size and spatial distributions of dust grains in the WL 17 disk. The best-fit model suggests that large grains (>1 cm) exist in the disk, settling down toward the midplane, whereas small grains (~10 ㎛) well mixed with gas are distributed off-center and non-axisymmetrically in a thick layer. The low spectral index and the modeling results suggest that grains rapidly grow at the protostellar stage and that grains differently distribute depending on sizes, resulting in substructures varying with observed wavelengths. To understand the differential grain distributions and substructures, we discuss the effects of the protoplanet(s) expected inside the large hole and the possibility of gravitational instability.

  • PDF

Dynamic Behaviour of Granular Meterial during the Rapid Motion (급속운동을 하는 입자물질의 동적거동)

  • Hwang, Hak
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-118
    • /
    • 1994
  • The rapid motion of granular material is microscopically observed, and investigated by continuum theory. From the binary collision phenomenon two different times are introduced : flying time and contact time. The former says the non -stationary motion and at a same time the variation of bulk volume. The latter is operative by a delayed time during the contact and describes the elastic properties of granular material. With both times a dynamic constitutive equation is postulated for four state variables : dispersive pressure, viscosity, thermal diffusivity and energy annihilation rate. The balance laws of mass, momentum and energy which are represented through above four variabls, are applied to the model, in which due to the elastic property the relaxation and energy absorption are explained.

  • PDF

A Study on the Principles of Extensive Connection in Psychological and Spatial Structure - Focused on the Extension Theory of Alfred North Whitehead - (심리적 공간구조의 연장적 결합원리 연구 - 화이트헤드의 연장이론을 중심으로 -)

  • Park, Kyoung-Ah
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.6
    • /
    • pp.79-87
    • /
    • 2011
  • Spatial perception and spatial structure that focus on psychological effects produce a real force through the medium of space that can control human actions, even their psychology. The job of understanding the characteristics and effects of architectural spaces that recognize the relationship between architecture and human beings, including the psychological dimension, is an alternative search for quality spaces that can increase the mutual relationship between space and human beings. This paper introduces two propositions called "space" and "psychology" in order to discover a meta-pattern connecting space and the human mind with the aim of systematizing that internal network and establishing a new architectural system concerning space and human beings. This paper also proposes a method of accessing physical spaces that can affect psychological states through a conceptual substitution called "extension," with the aim of discovering the implications inherent in such extensive relationships and proposing a methodology of organizing psychological spaces based on the characteristics of that extensive connection. The means of extensively connecting psychological spaces were classified into the three categories of memory system, sensory system, and motor system, and their corresponding extensive connection characteristics called "simultaneous relativity," "non-mediated immediacy," and "purification process" were also derived. These characteristics accelerate the changes in psychological intensity and function as principles that organize psychological space.

OCCURENCE AND LUMINOSITY FUNCTIONS OF GIANT RADIO HALOS FROM MAGNETO-TURBULENT MODEL

  • CASSANO R.;BRUNETTI G.;SETTI G.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.589-592
    • /
    • 2004
  • We calculate the probability to form giant radio halos (${\~}$ 1 Mpc size) as a function of the mass of the host clusters by using a Statistical Magneto-Turbulent Model (Cassano & Brunetti, these proceedings). We show that the expectations of this model are in good agreement with the observations for viable values of the parameters. In particular, the abrupt increase of the probability to find radio halos in the more massive galaxy clusters ($M {\ge} 2{\times}10^{15} M_{\bigodot}$) can be well reproduced. We calculate the evolution with redshift of such a probability and find that giant radio halos can be powered by particle acceleration due to MHD turbulence up to z${\~}$0.5 in a ACDM cosmology. Finally, we calculate the expected Luminosity Functions of radio halos (RHLFs). At variance with previous studies, the shape of our RHLFs is characterized by the presence of a cut-off at low synchrotron powers which reflects the inefficiency of particle acceleration in the case of less massive galaxy clusters.

Static Characteristics of Micro Gas-Lubricated proceeding Bearings with a Slip Flow (미끄럼 유동을 고려한 초소형 공기 베어링의 정특성)

  • Kwak, Hyun-Duck;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.137-142
    • /
    • 2002
  • The fluid mechanics and operating conditions of gas-lubricated proceeding bearings in micro rotating machinery such as micro polarization modulator and micro gas turbine are different from their larger size ones. Due to non-continuum effects, there is a slip of gas at the walls. Thus in this paper, the slip flow effect is considered to estimate the pressure distribution and load-carrying capacity of micro gas-lubricated proceeding bearings as the local Knudsen number at the minimum film thickness is greater than 0.01. Based on the compressible Reynolds equation with slip flow, the static characteristics of micro gas-lubricated proceeding bearings are obtained. Numerical predictions compare the pressure distribution and load capacity considering slip flow with the performance of micro proceeding bearings without slip f]ow for a range of bearing numbers and eccentricities. The results clearly show that the slip flow effect on the static characteristics is considerable and becomes more significant as temperature increases.

  • PDF

Dynamic Analysis of a Very Flexible Cable Carrying A Moving Multibody System (다물체 시스템이 이동하는 유연한 케이블의 동역학 해석에 관한 연구)

  • 서종휘;정일호;한형석;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.150-156
    • /
    • 2004
  • In this paper, the dynamic behavior of a very flexible cable due to moving multibody system along its length is presented. The very deformable motion of a cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. Formulation for the sliding joint between a very flexible beam and a rigid body is derived. In order to formulate the constraint equations of this joint, a non-generalized coordinate, which has no inertia or forces associated with this coordinate, is used. The modeling of this sliding joint is very important to many mechanical applications such as the ski lifts. cable cars, and pulley systems. A multibody system moves along an elastic cable using this sliding joint. A numerical example is shownusing the developed analysis program for flexible multibody systems that include a large deformable cable.

Molecular Biology of Secondary Growth

  • Han, Kyung-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.45-57
    • /
    • 2001
  • Trees have the ability to undergo secondary growth and produce a woody body. This tree-specific growth is affected by the secondary vascular system and the developmental continuum of secondary phloem and xylem. Secondary growth is one of the most important biological processes on earth. Considering its economic and environmental significance, our knowledge of tree growth and development is surprisingly limited. Trees have received little attention as model species in plant science, as most Plant biology questions can be best addressed by using herbaceous model species, such as Arabidopsis. Furthermore, tree biology is difficult to study mainly due to the inherent problems of tree species, including large size, long generation time, large genome size, and recalcitrance to biotechnological manipulations. Despite all of this, one must rely on trees as models to study tree-specific questions, such as secondary growth, which cannot be studied effectively in non-woody model species. Recent advances in genomics technology provide a unique opportunity to overcome these inherent tree-related problems. Several groups, including our own, have been successful in studying the biology of wood formation with a variety of hardwood and softwood species. In this article, 1 first review the current understanding of tree growth and then discuss the recent attempts to fully explore and realize the potential of molecular biology as a tool for enhanced understanding of secondary growth.

  • PDF