Dynamic Behaviour of Granular Meterial during
the Rapid Motion
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Abstract

The rapid motion of granular material is microscopically observed, and investigated by
continuum theory, From the binary collision phenomenon two different times are
introduced ; flying time and contact time. The former says the non—stationary motion and
at a same time the variation of bulk volume. The latter is operative by a delayed time
during the contact and describes the elastic properties of granular material. With both
times a dynamic constitutive equation is postulated for four state variables: dispersive
pressure, viscosity, thermal diffusivity and energy annihilation rate. The balance laws of
mass, momentum and energy which are represented through above four variabls, are ap-
plied to the model, in which due to the elastic property the relaxation and energy absorp-
tion are explained.

1. Introduction

It is the purpose of this paper to outline a theory of grain flow which is based upon the
description of continuous matter fields. The thesis is that, depending upon the agitation of
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the particles, their mean free path may vary so that the bulk material under the rapid mo-
tion of the particles is not density preserving. We close this system of equations by
phenomenological relationships for (i) the dispersive pressure o, (ii) the viscosity of the
“viscous” stresses #, (iii) the diffusivity of the flux of fluctuation energy k and (iv) the
annihilation rate of the fluctuation energy i. These qualities are coupled with the other
field variables, primarily the fluctuation energy. This model is simple because it is in large
parts based on dimensional arguments, but it will be demonstrated that it captures the es-
sential physics to a very high degree of satisfaction.

Up —to—date surways of the state of the art are given by Campbell” and Hutter &
Rajagopal® which contain a large number of references.

We still restrict considerations to binary collisions but define the time of an encounter
between two particles to consist of the small but finite contact time plus the time of free
flight prior to the next collision. The duration of a collision depends on the deformation of
the interacting particles and how long it takes for this information to be transmitted forth
and back through the particle when the particles rebounce from one another. With this
contact time being included in the formal definition of the duration of an encounter the

proposed model is able to aveoid the often mentioned singularities in the tramsport
coefficients.

2. The binary collision phenomenon

Ensuing theoretical developments will concentrate upon rapid motions of granular
materials in close analogy to Haffls original theory®, however with the physically signifi-
cant difference that

{ i) the(visco) —elastic properties of the material of the particles is accounted for by e.

g. assuming a finite non zero Young’s modulus(0<<E<cc) and

(i) the bulk density is assumed to vary with the state of agitation of the particles.

Consider the collision of two smooth spheres that experience a centric encounter. The bi-
nary collision is the following phenomenon: The two spheres approach each other with o speed,
encounter with one another, remain in contact for some short duration, separate afterwards and
subsequently move apart from each other with relative velocity. This impulse phenomenon can es-
gentially be divided into two phases: the flying phase and the contact phase. These can be
interpreted as follows:

Prior to any encounter, i. e. during the flying phase, the two spheres possess only kinetic
energy. During collision they completely give away their kinetic energy which is transferred
within the spherical particle into vibrational or wave energy. Once the elastic wave, that has
been produced within a particle by this wave energy, is reflected and refracted at the
sphere’s boundaries and has returned to the contact point of the two particles, kinetic en-
ergy will again be created, but it will be less than the kinetic energy of the two particles
before the encounter. The remaining energy, i. e. the difference between the kinetic energy
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of the approaching and repulsing particle is dissipated in the plastic deformation during
collision and the eigenoscillations within the particle. In reality, the wave will essentially
dissipate away and be transferred into heat in a finite time, ideally a time that, roughly,
corresponds to the free flying time of the particles. The particles then move until they en-
counter the next collision. During this flying episode they are subject to kinetic energy and
vibrational energy, but during the contact time they primarily experience vibrational en-
ergy. All this is valid for an observer moving with the mean speed of the two particles.

Two phases of motion are typical for the phenomenon: First the flying phase with its
kinetic energy. (The vibrational energy the particle transports with it during this phase is
a dead parameter and is of no concern here). We shall view it as a pure translation by
which momentum and energy is transported, i. e. rotational inertia of the particles is
regarded as insignificant. This translational motion of the flying particles is responsible for
the size of the mean free path between the particles that is established by the dispersive
pressure it produces and corresponds to the fluctuation energy of “granular” temperature
known from kinetic models. Second, in the contact phase the particles experience material
deformations. The particles in this phase will react to the external loads or contact forces.
It is apparent, that both phases are characterized by different, mutually(nearly) indepen-
dent, physical effects; the flying phase is responsible for the translation of the kinetic
properties and governs the particle concentration{dnsity) under the fluctuating motion,
while the contact phase responds to the material properties of the particles.

3. Parameterizations

Our aim is to lay down suitable parameters by which each of the two states of the
granular material can be described. Of particular interest hereby are the interactions of
translational momentum and energy.

Let t. and t. denote the fiying time and the contact time, respectively; they may be defined
by

t, = % b= oL (3.1)

in which s is the mean separation distance of the spherical particles, v their speed of ap-
proach, d their common diameter and ¢ = vV E /§ the primary elastic wave speed of their
material, respectively, see Fig. 1. If the granular material consists of sand, gravel or other
natural grains, s and d will be a typical mean separation and a typical diameter of the
grains. Moreover, « in (3.1) is a dimensionless number of order unity that can be treated
as an adjustable parameter of the theory, or may simply be set equal to two. t; is an im-
portant parameter for time—dependent non-—stationary motions. Its temporal variation is
accompanied by variation of the specific volume and thus encompasses dilation and con-
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Fig.1 Flying time and contact time

traction. The elastic properties of the grains are operative by a delayed time t. Haff in his
work has ignored these elasticity effects so t. = 0 or ¢ — 0, E — <0 in his limit that

corresponds to rigid particles.
If s is the mean free path between spherical particles of diameter d and density p, in

which s is zero, the mass density of the array of particles is

o) = (3) o @

Given a diameter d the density of the granular array is therefore a function of s, the
mean free path length. Unlike Haff who sets p~m/d® we shall not ignore s and thus incor-
porate in our model effects of the variation of the density.

We define an encounter period of two particles to consist of their collision plus the
processes in between two collisions. Thus the time t, between two encounters is the sum of

the flying time and the contact time.

te=tott=—tad = dys o1y 44 L, (33)

s

in which (3.2) has been used.
4. The microscopic model

To close the above system phenomenological statements must be proposed for the state
variables o, 5, k and i. Our approach will be simple minded, as we only employ arguments
of dimensional analysis. In order to determine the relationships that govern o, #, k and i,
we make use of the simple picture provided by a cell model*. The central grain is imagined
to vibrate with an average speed v (in the gas dynamics it is called fluctuation velocity)
in a random fashion and its effect upon the surrounding grains is described.

4.1 The equation of state for the dispersive pressure
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One effect is certainly dispersive pressure that is established. Dimensionally, it is “force
per area” or “mass times acceleration per area”. The mass of a cell is m=p{(d+s)*, a typi-
cal acceleration is the translational speed divided by the time of encounter, v/t. and the

area of a cell having side length (d+s) is (d+s)% Hence

ptd+s)? % + v i
PO e o pde) — Y 1
ey - peldte S 4.4

g = P

where p is a dimensionless constant.

4.2 Viscosity

The dynamic viscosity is dimensionally given by “density times area divided by time”, if
the three quantities are taken to be p, (d+s)® and t., respectively, then

n = qp(d+s)’ S_:—d , {4.2)
v X%

in which q is a dimensionless coefficient. A more appropriate motivation follows Prandtl’s®

seminal work on turbulent eddy viscosity by word —by —word translation to the present

situation. Imagine a shear flow of a granular system, see Fig. 2, When grains collide be-

tween two neighbouring layers, an average net momentum of magnitude mAu=p({d+s)’ Au

in the flow direction is transferred. With the collision rate being t,”' the shear stress

exerted by the upper layer, on the lower layer, is

Fig.2 Two neighbouring layers at a distance d+s with a different velocity Au

o _—mAu _ p(d+s)Au _ du
CT s T s 4,4 T Ty (43)
v C

where Au/(d+s) ~ du/dy has been used.
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4.3 Thermal diffusivity

The kinematic viscosity(n/p) and the thermal diffusivity have the same dimension and
so one might be tempted to simply postulate k ~ n/p with 5 given in (4.2). However, this
would imply that for an infinitely dilute system of particles (s ~ ) k tends to infinity,
which is unphysical. It is more appropriate to choose k ~ n/p, which now yields

k= r(d+s)? ——, (4.4)
Ps S 4448
v c
in which r is again a dimensionless coefficient. Note that for s — = (4.4) implies k — 0 as
it should be. Incidentally these considerations suggest that also the kinematic viscosity
should be defined as n/p..

4.4 The collisional energy annihilation rate

By formulating the momentum and energy balances of two colliding spheres it can be
shown that the energy lost in such a collision can be expressed as A E = (1—e9)mVv’/2,
where e is the coefficient of restitution and m the mass of the colliding particles. Multiply-
ing this by the collision rate, t,”' and the number density of the particles, n, and using n m

= p yields

i=yp (4.6)

.
%-f—oci

C
where y is a dimensionless factor proportional to (1 —e?).

4.5 Disscussion

To discuss the proposed phenomenclogical relations for g, #, k and i it is advantageous to
write them in dimensionless form. To this end, let

s _ ¥
8§ = L V=u - (4.7)
and
- a - n : k = i
= T = , k= L1 = (4.8)
v . dv rdv v
pp ap TPy

With these, it is straightforward to show that
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- 1 = — — 1 T _ 1
7= T ETDT T T R T T T ity (4.9)

Note that in the definitions of the dimensionless quantities o, #, k, i, we do not make use
of the elastic properties of the granular material, this is important if results are being
compared with those of Haff in which V=0(or ¢ — ) at fixed p.. Fig. 3 displays the
dependencies of &, 7 or k and 1 upon the dimensionless mean free path S and the
dimensionless elasticity V of the granules, V = 0 corresponding to the rigid particle of
Haff. Evidently, all state variables o, 5 k and 1 are monotonically decreasing functions of S,

o ﬁ-("]'{) 1
— V =0.0 (Haff)

3 V=01 3
-V=02

9 V=038 >

1t

Fig.3 Developments of the dimensionless state variables o, #, k and i against the free path S,
parameterized for four different values V, measuring the role of elasticity.

Furthermore,

¢ the more elastic the particle is, i. e. the larger V is, the smaller will be the value of the
state variable and the less will its value vary with S,

o the larger the compaction of the particles, i. e. the smaller S, is, the larger will be the

values of the state variables.

Alternatively, the elastic particle absorbs after each collision a small portion of the en-
ergy, stores it as vibrational energy and dissipates it eventually as heat. The rigid
particles do not so: such particles transport more fluctuation energy, the agitation and
thus the fluctuation velocity v of the granular assemblage with rigid particles is larger
than for deformable particles, and this must be so independent of the actual value of the
mean free path length: |Vl <|V,gi. This causes the values of o, ;,v, %k and i to be smaller
for elastic particles than for rigid particles and gives rise to the relaxation effects that can
become effective when the vibrational energy is lost by dissipation.

5. Some solutions of the field equations
We shall in this capital study the behaviour of the model equations under very simple
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but typical flow conditions. In particular,

¢ closed systems will be analyzed, i. e. neither material nor energy is assumed to be ex-

changeable with the surroundings,

» the macroscopic or mean particle motion vanishes, i. e. no material is transported,

s the effects of gravity are ignored (g=0).

More complex typical motions of granular material in which the formulation of boundary
conditions becomes crucial are deferred to follow —up papers. We regard our granular sys-
tem to be describable by the balance laws of mass, momentum and energy of classical con-
tinuum physics. Thus, if u=(u, u, u;) is the macrescovic flow velocity of the grain sys-

tem, then conservation of mass leads, as in fluid mechanics, to

2P L2 oy =
P po {pu;) = 0, (5.1)
in which i = 1, 2, 3 indicates the Cartesian co—ordinate x, Repeated indices are summed

from 1 to 3. As a momentum equation thought to be appropriate we take

2 2 2a at;i
2 2 () = — 20+ 2 e :
" (pu) + axk(pu u) - - (5.2)

pl

in which ¢ is the dispersive pressure, t;; the stress tensor and pg; the specific gravity force.

The conservation of the energy is taken here in the form.

2,1 24 1 7y . _ _@ g 1l = 1 4y _ au, Iy,
Y (5pu® + 5pv) o~ [Puk(—p + St + 5 — unl - + ax)
_ -2 L - 3
k -y (zpvz)] + pug 1, (5.3)

in which v is the fluctuating speed, and k functions like a thermal diffusivity. We have
partitioned in (5.3) the specific energy into the overall flow kinetic energy pu’/2 and the
“internal” energy of the fluctuations pvz/Z and have ignored a rotational energy in con-

formity will the earlier assumption that rotational inertia of the grains is negligible.

5.1 Uniformly excited system in a closed box of fixed volume

Consider a granular material in a rigid rectangular box. Imagine that this system has for
a long time been subject to random vibrations about its center at rest so that the
particles inside the box are uniformly distributed and perform a fluctuating motion(that
is affected by repetitive ongoing collisions) about their constant mean position. Assume
that. at time t = 0 the shaking motion is suddenly stopped. The fluctuation velocity v({)
= v, is then allowed to decay with time. Because of the constancy of the volume of the box

110 3104 F49% - 19945 12 A



the particle density or the mean free path length remain constant, s(t) = s, Of the field
equations the balance laws of mass and momentum are trivially satisfied, while the energy

equation reduces to

1 d 2 Vz
48 ity —Y =0 (5.4)
2 dt S+cx-‘é-d

integration of (5.4) under the condition that s = s, and subject to the initial condition

v(0) = v, ylelds

_Y Nodg v o4 Yo,

(1 V)+aCSOInVO+}’SDt 0 {5.5)

with the dimensionless quantities

d o 4 t

Vy d c c Vi t
Z —_— = — = —, T: = 9y—t1 = y=—= 56
< s 5 . Ly " (5.6)
Vo
this can be written as

(5.7)

(1= + 2z L+ T=0

Vi

in the above, ty, = s,/ v, is the flying time at t = 0, so Z is a measure of the influence of

10
0.8
........... Z =10
ol b Z=05
Z = 00(Haff)
0.4
0.2 i
L e
oz 4 & 8 10

Fig.4 Relaxation of the mean fluctuation velocity v for various values of the elasticities of
the particle in the constant —volume box experiment.
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the elastic properties on the temporal evolution of the scaled fluctuation energy and thus
measures its relaxation time, while T 18 a dimensionless time. Fig. 4 displays the decay of
the fluctuation velocity v with time for various values of the variable Z.

When Z # 0, as can be seen from Fig. 4 these relaxation times are larger, i. e., the more
elastic the material is, the slower the particles will relax in this experiment.

5.2 Uniformly excited system in a closed box at constant pressure

Consider that the box now possesses a rigid lid, a frictionless moveable piston which
carries a constant load, so that the inside mean pressure is constant in time o(t) = g, see
Fig. 5. As a result, the volume of the box will adjust itself to the existing pressure. For
uniform and steady state conditions of the macroscopic system the balance laws of mass
and momentum are trivially satisfied, if gravity forces are ignored. We shall confine atten-
tion first to such a Gedankenexperiment and later in a second experiment stop the shaking
and investigate the decay rates at constant pressure.

Using

S

S=1 S=5 W=l V=ol (5.8)

LR
AT EH NN

Fig.s Uniformly excited system with a constant pressure.

(the indexed quantities are referred to the initial reference state) as previously defined in
{4.7), and introducing the scaled fluctuation energy

2
A|2 — BV —

pve (1—|1-S)3 ( “\\/]")2 (5.9)

whose value in the reference state is Ay, = 1/ (1+85;)? and writting

Ty

v
Ps o

p,= L (5.10)

for the constant dimensionless pressure, it is easily shown that the expression for the press-
ure(4.1) can be written as
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(1+S)A?

P = ST V+sea,  comst (5.11)

These equations have been derived for the (relaxed) conditions that the mean free path
length and the fluctuation energy may vary with time. In initial state in which energy
source and sink are balanced S = 8, and A? = A, so that equations {5.11) become two
possible forms of the “thermal equation of state”. The relation says that pressure, density
and “granular temperature” are related to one another, and demonstrates the isobars, (P,
fixed), isotherms (A’ fixed) and isochores (S, fixed). In a gas the time scales of the relax-
ation of the microscopic processes are very much smaller than the time scales of the
macroscopic processes implying that on the macroscopic level the thermal equation of state
1s a meaningful concept. This is not necessarily so for a granular system, so that the more
general equation system that incorporates relaxation effects must be solved.

Further physical insight is gained from (5.11), if we introduce the state of closest pack-
ing, corresponding to 8 = ( or § = 0. We shall refer to this state as the solid body state.
This state need not be motionless, even when u=0, because rearrangements of particles at

= () seem to be possible. Thus, the fluctuation energy corresponding to this state is not
unique but lies in the interval 0<A’<A,” where A’ is that minimal energy beyond which
the granular assemblage gives away the densest packing. We call this energy the transition
energy, or solid body energy

A, = PV, {5.12)

Because it is difficult to find an order of magnitude for P, estimates for (5.12) cannot

easily be found. However, the guantity

2
dy P v 0 og_z Oy
¢ p E.

Y = PV} =~ — PV, = A2« %"— <<, (5.13)

q
p ps.‘vﬂ

in which E, is the modulus of elasticity in the solid body state, is easily estimated. With
(5.12) and (5.13) and by scaling the fluctuation energy with A, i. e, A = A/A,, it is
readily shown that (5.11) implies

2 N S —

whose positive root (the only physically relevant one) is

- L1 1/2 4 72
(1"|"S) [1+4+ ¥ (1+S)2}l ] {5.15)
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Qualitatively, the normalized energy A’ grows monotonically with growing S see Fig. 6.:
indeed it assumes a minimum for 8 = (. The Panel b) shows an enlarged closeup of the
neighbourhood of the origin, where A, (S=0)=1. This non—zero value of the transition en-
ergy in our theory is the true physical reason that no singularities arige in the expressions
for the state variables o, #, k and i when 8 — 0. It also gives rise to the following in-
terpretation. The material can sustain a certain amount of energy and stay in the
rigid —body state without any sign of loosening —up. Only when an amount of energy corre-
sponding to the transition energy has been established, the material will loosen —up. Inci-
dentally, our concept has found a well known application in so0il mechanics in methods of
80il compaction. In order to enlarge the load capacity of a soil, the soil material is
compacted by repetitive beats of a vibrating machine. If the energy that is driven into the
soil is too small, the soil will hardly react. If the energy is above the threshold value of the
transitional energy the soil material will become loose according to Fig, 6. This energy will
be stored in the form of elastic waves which eventually will die away owing to the
anelasticities that are present.

A, A
50 16
$=0,0001
s ¥=0.0001 _—
30 )
8
1 0001 |
10 0.1 |
=t . s o R
Lowd
0 005 010 015 020 025 0 0.0 8
{a) {b)

Fig6 Non—dimensionalized fluctuation energy A for different values of ‘¥.

We next study the relaxation process that sets in, once the shaking motion of the con-
stant - pressure box is stopped. Then the energy equation applies in the form (5.4), which
upon substitution of the scales(5.8) —(5.10) takes the form

1 dad i A
T 5(1+S5) SH+HV,(1+S8) %A,

2 dT =0 (5.16)

and, when the constant pressure formula is incorporated, becomes

2
-12— %5- + PS.(1+8)!%A, = 0 (5.17)
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When the scales

- A, _
A= A_ and T = 2% (5.18)
s 1]
are used, we finally get
dA? o
-’a",Tr + [(1+S)At2]1‘2 =0 (5.19)

In our more general mode! (eq. {5.19)) the evolution of the scaled fluctuation energy
depends upon density, which itself is given by (5.15). Let T, be the transition time, i. e. the
time it takes the relaxing granular system that started with an energy A,>1(larger than
the transition energy) until it has relaxed to the solid body state(corresponding to A, =
1). Then it follows from (5.19) by integration that

At d(XZ) e
S TarseoxT? = (5.20)

where 8(X) is obtained from(5.15), and must be numerically integrated.

This case is graphically displayed in Fig. 7. It shows T. plotted against A’ in the inter-
val 1 <AZ < 10. A, is the starting fluctuation energy and T, the time it takes until this
energy relaxes to the solid body energy. ¥ is a measure of the elasticity of the grains. It is
seen that, the more elastic the grains are, the less time it fakes until the solid body state is reached.
For instance, when ¥ = (.001, each particle absorbes in each encounter a relatively large
amount of wave energy and keeps it so that the fluctuation energy becomes lesser and

lesser.

Ts

18 1 —
F//-’
s /, e

— ¢ =(.0(Haff) T

9 e -
G ¥=0.0001
6
=000 3
A,
0 + } $
1.0 4.0 6.0 7.0 10.0

Fig.7 Relaxation of the fluctuation energy in a shaken box filled with
particles at constant pressure.
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6. Closing remarks

We have taken a rather simple approach and base our concept on the continuum formu-
lation of the balances of mass, momentum and energy in which, besides the kinetic energy
of the macroscopic motion, also the kinetic energy of the fluctuating motion is accounted
for, These laws are complemerted by constitutive relations for the dispensive pressure,
shear viscosity (of a viscous stress), diffusivity of the fluctuation energy and its annihil-
ation rate. Relationships for these are proposed on the basis of arguments of dimensional
analysis by looking at the binary collision of two identical spherical particles. The mean
time between encounters of particles consists of the mean free flying time in between
collisions plus the mean duration of a collision. Therse differences lead to important quali-
tative differences of the inferences that can be drawn:

* Dispersive pressure, viscosity, diffusivity and energy annjhilation rate are bounded at

zero mean free path length.

* These same quantities monctonically decrease with the size of the mean free path, and

the increasing elasticity, of the particle material.

¢ The relaxation of the settling motion at constant volume is slowed down by the elas-

ticity of the particles.
¢ In a steady uniform shaking motion at constant dispersive pressure there exists a
“thermal equation of state” relating pressure, mean free path length and flucutation
ener gy( = granular temperature ) .

¢ There is a finite non—zero value of the fluctuation energy below which the particles
are in contact and beyond which they are separated from one another with a
nonvanishing mean free path length. This threshold is called the solid body energy and
the granular material with fluctuation energies below it is called to be in the solid body
state.

¢ The time to reach the solid body state in a relaxation experiment starting from a fluc-

tuation energy above the threshold is finite and for fixed density the smaller, the more
elastic the particles are.

These results are physically intuitively plausible and they are not borne out by other
models describing the rapid flow of granular materials. To obtain them the two relaxing
asgumptions, i. e., variable bulk density and non—vanishing contact time are very import-
ant.

There are many areas in which further investigation is required. Among these are ( i)
inclusion of gravity in the above Gedankenexperiment, (ii) treatment of gravitational
(shear) flow, (iii) theory of the propagation of sound and so on, some of these will be dealt
with in an upcoming paper.
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