• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.04 seconds

Implementation of Smart Metering System Based on Deep Learning (딥 러닝 기반 스마트 미터기 구현)

  • Sun, Young Ghyu;Kim, Soo Hyun;Lee, Dong Gu;Park, Sang Hoo;Sim, Issac;Hwang, Yu Min;Kim, Jin Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.829-835
    • /
    • 2018
  • Recently, studies have been actively conducted to reduce spare power that is unnecessarily generated or wasted in existing power systems and to improve energy use efficiency. In this study, smart meter, which is one of the element technologies of smart grid, is implemented to improve the efficiency of energy use by controlling power of electric devices, and predicting trends of energy usage based on deep learning. We propose and develop an algorithm that controls the power of the electric devices by comparing the predicted power consumption with the real-time power consumption. To verify the performance of the proposed smart meter based on the deep running, we constructed the actual power consumption environment and obtained the power usage data in real time, and predicted the power consumption based on the deep learning model. We confirmed that the unnecessary power consumption can be reduced and the energy use efficiency increases through the proposed deep learning-based smart meter.

A Correction of East Asian Summer Precipitation Simulated by PNU/CME CGCM Using Multiple Linear Regression (다중 선형 회귀를 이용한 PNU/CME CGCM의 동아시아 여름철 강수예측 보정 연구)

  • Hwang, Yoon-Jeong;Ahn, Joong-Bae
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.214-226
    • /
    • 2007
  • Because precipitation is influenced by various atmospheric variables, it is highly nonlinear. Although precipitation predicted by a dynamic model can be corrected by using a nonlinear Artificial Neural Network, this approach has limits such as choices of the initial weight, local minima and the number of neurons, etc. In the present paper, we correct simulated precipitation by using a multiple linear regression (MLR) method, which is simple and widely used. First of all, Ensemble hindcast is conducted by the PNU/CME Coupled General Circulation Model (CGCM) (Park and Ahn, 2004) for the period from April to August in 1979-2005. MLR is applied to precipitation simulated by PNU/CME CGCM for the months of June (lead 2), July (lead 3), August (lead 4) and seasonal mean JJA (from June to August) of the Northeast Asian region including the Korean Peninsula $(110^{\circ}-145^{\circ}E,\;25-55^{\circ}N)$. We build the MLR model using a linear relationship between observed precipitation and the hindcasted results from the PNU/CME CGCM. The predictor variables selected from CGCM are precipitation, 500 hPa vertical velocity, 200 hPa divergence, surface air temperature and others. After performing a leave-oneout cross validation, the results are compared with the PNU/CME CGCM's. The results including Heidke skill scores demonstrate that the MLR corrected results have better forecasts than the direct CGCM result for rainfall.

A Study on Production Well Placement for a Gas Field using Artificial Neural Network (인공신경망 시뮬레이터를 이용한 가스전 생산정 위치선정 연구)

  • Han, Dong-Kwon;Kang, Il-Oh;Kwon, Sun-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.2
    • /
    • pp.59-69
    • /
    • 2013
  • This study presents development of the ANN simulator for well placement of infill drilling in gas fields. The input data of the ANN simulator includes the production time, well location, all inter well distances, boundary inter well distance, infill well position, productivity potential, functional links, reservoir pressure. The output data includes the bottomhole pressure in addition to the production rate. Thus, it is possible to calculate the productivity and bottomhole pressure during production period simultaneously, and it is expected that this model could replace conventional simulators. Training for the 20 well placement scenarios was conducted. As a result, it was found that accuracy of ANN simulator was high as the coefficient of correlation for production rate was 0.99 and the bottomhole pressure 0.98 respectively. From the resultes, the validity of the ANN simulator has been verified. The term, which could produce Maximum Daily Quantity (MDQ) at the gas field and the productivity according to the well location was analyzed. As a result, the MDQ could be maintained for a short time in scenario C-1, which has the three infill wells nearby aquifer boundary, and a long time in scenario A-1. In conclusion, it was found that scenario A maintained the MDQ up to 21% more than those of scenarios B and C which include parameters that might affect the productivity. Thus, the production rate can be maximized by selecting the location of production wells in comprehensive consideration of parameters that may affect the productivity. Also, because the developed ANN simulator could calculate both production rate and bottomhole pressure, respectively, it could be used as the forward simulator in a various inverse model.

Random Noise Addition for Detecting Adversarially Generated Image Dataset (임의의 잡음 신호 추가를 활용한 적대적으로 생성된 이미지 데이터셋 탐지 방안에 대한 연구)

  • Hwang, Jeonghwan;Yoon, Ji Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.629-635
    • /
    • 2019
  • In Deep Learning models derivative is implemented by error back-propagation which enables the model to learn the error and update parameters. It can find the global (or local) optimal points of parameters even in the complex models taking advantage of a huge improvement in computing power. However, deliberately generated data points can 'fool' models and degrade the performance such as prediction accuracy. Not only these adversarial examples reduce the performance but also these examples are not easily detectable with human's eyes. In this work, we propose the method to detect adversarial datasets with random noise addition. We exploit the fact that when random noise is added, prediction accuracy of non-adversarial dataset remains almost unchanged, but that of adversarial dataset changes. We set attack methods (FGSM, Saliency Map) and noise level (0-19 with max pixel value 255) as independent variables and difference of prediction accuracy when noise was added as dependent variable in a simulation experiment. We have succeeded in extracting the threshold that separates non-adversarial and adversarial dataset. We detected the adversarial dataset using this threshold.

PVC Classification based on QRS Pattern using QS Interval and R Wave Amplitude (QRS 패턴에 의한 QS 간격과 R파의 진폭을 이용한 조기심실수축 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.825-832
    • /
    • 2014
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. Even if some methods have the advantage in low complexity, but they generally suffer form low sensitivity. Also, it is difficult to detect PVC accurately because of the various QRS pattern by person's individual difference. Therefore it is necessary to design an efficient algorithm that classifies PVC based on QRS pattern in realtime and decreases computational cost by extracting minimal feature. In this paper, we propose PVC classification based on QRS pattern using QS interval and R wave amplitude. For this purpose, we detected R wave, RR interval, QRS pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through QS interval and R wave amplitude. The performance of R wave detection, PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 PVC. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 93.72% in PVC classification.

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.

A novel approach to the classification of ultrasonic NDE signals using the Expectation Maximization(EM) and Least Mean Square(LMS) algorithms (Expectation Maximization (EM)과 Least Mean Square(LMS) algorithm을 이용하여 초음파 비파괴검사 신호의 분류를 하기 위한 새로운 접근법)

  • Daewon Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.1
    • /
    • pp.15-26
    • /
    • 2003
  • Ultrasonic inspection methods are widely used for detecting flaws in materials. The signal analysis step plays a crucial part in the data interpretation process. A number of signal processing methods have been proposed to classify ultrasonic flaw signals. One of the more popular methods involves the extraction of an appropriate set of features followed by the use of a neural network for the classification of the signals in the feature space. This paper describes an alternative approach which uses the least mean square (LMS) method and expectation maximization (EM) algorithm with the model based deconvolution which is employed for classifying nondestructive evaluation (NDE) signals from steam generator tubes in a nuclear power plant. The signals due to cracks and deposits are not significantly different. These signals must be discriminated to prevent from happening a huge disaster such as contamination of water or explosion. A model based deconvolution has been described to facilitate comparison of classification results. The method uses the space alternating generalized expectation maximization (SAGE) algorithm In conjunction with the Newton-Raphson method which uses the Hessian parameter resulting in fast convergence to estimate the time of flight and the distance between the tube wall and the ultrasonic sensor Results using these schemes for the classification of ultrasonic signals from cracks and deposits within steam generator tubes are presented and showed a reasonable performances.

  • PDF

Face Detection in Color Images Based on Skin Region Segmentation and Neural Network (피부 영역 분할과 신경 회로망에 기반한 칼라 영상에서 얼굴 검출)

  • Lee, Young-Sook;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.1-11
    • /
    • 2006
  • Many research demonstrations and commercial applications have been tried to develop face detection and recognition systems. Human face detection plays an important role in applications such as access control and video surveillance, human computer interface, identity authentication, etc. There are some special problems such as a face connected with background, faces connected via the skin color, and a face divided into several small parts after skin region segmentation in generally. It can be allowed many face detection techniques to solve the first and second problems. However, it is not easy to detect a face divided into several parts of regions for reason of different illumination conditions in the third problem. Therefore, we propose an efficient modified skin segmentation algorithm to solve this problem because the typical region segmentation algorithm can not be used to. Our algorithm detects skin regions over the entire image, and then generates face candidate regions using our skin segmentation algorithm For each face candidate, we implement the procedure of region merging for divided regions in order to make a region using adjacency between homogeneous regions. We utilize various different searching window sizes to detect different size faces and a face detection classifier based on a back-propagation algorithm in order to verify whether the searching window contains a face or not.

  • PDF

A Study on Optimum Ventilation System in the Deep Coal Mine (심부 석탄광산의 환기시스템 최적화 연구)

  • Kwon, Joon Uk;Kim, Sun Myung;Kim, Yun Kwang;Jang, Yun Ho
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.186-198
    • /
    • 2015
  • This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow. The working environment is deteriorated due to a rise in temperature of a coal mine caused by increase of its depth and carriage tunnels. To improve the environment, the ventilation evaluation on J coal mine is carried out and the effect of a length of the tunnel on the temperature to enhance the ventilation efficiency in the subsurface is numerically analyzed. The analysis shows that J coal mine needs $17,831m^3/min$ for in-flow ventilation rate but the total input air flowrate is $16,474m^3/min$, $1,357m^3/min$ of in-flow ventilation rate shortage. The temperatures were predicted on the two developed models of J mine, and VnetPC that is a numerical program for the flowrate prediction. The result of the simulation notices the temperature in the case of developing all 4 areas of -425ML as a first model is predicted 29.30 at the main gangway 9X of C section and in the case of developing 3 areas of -425ML excepting A area as a second model, it is predicted 27.45 Celsius degrees.

A study on the estimation of AADT by short-term traffic volume survey (단기조사 교통량을 이용한 AADT 추정연구)

  • 이승재;백남철;권희정
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.59-68
    • /
    • 2002
  • AADT(Annual Average Daily Traffic) can be obtained by using short-term counted traffic data rather than using traffic data collected for 365 days. The process is a very important in estimating AADT using short-term traffic count data. Therefore, There have been many studies about estimating AADT. In this Paper, we tried to improve the process of the AADT estimation based on the former AADT estimation researches. Firstly, we found the factor showing differences among groups. To do so, we examined hourly variables(divided to total hours, weekday hours. Saturday hours, Sunday hours, weekday and Sunday hours, and weekday and Saturday hours) every time changing the number of groups. After all, we selected the hourly variables of Sunday and weekday as the factor showing differences among groups. Secondly, we classified 200 locations into 10 groups through cluster analysis using only monthly variables. The nile of deciding the number of groups is maximizing deviation among hourly variables of each group. Thirdly, we classified 200 locations which had been used in the second step into the 10 groups by applying statistical techniques such as Discriminant analysis and Neural network. This step is for testing the rate of distinguish between the right group including each location and a wrong one. In conclusion, the result of this study's method was closer to real AADT value than that of the former method. and this study significantly contributes to improve the method of AADT estimation.