• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.061 seconds

Enhancing Object Recognition in the Defense Sector: A Research Study on Partially Obscured Objects (국방 분야에서 일부 노출된 물체 인식 향상에 대한 연구)

  • Yeong-hoon Kim;Hyun Kwon
    • Convergence Security Journal
    • /
    • v.24 no.1
    • /
    • pp.77-82
    • /
    • 2024
  • Recent research has seen significant improvements in various object detection and classification models overall. However, the study of object detection and classification in situations where objects are partially obscured remains an intriguing research topic. Particularly in the military domain, unmanned combat systems are often used to detect and classify objects, which are typically partially concealed or camouflaged in military scenarios. In this study, a method is proposed to enhance the classification performance of partially obscured objects. This method involves adding occlusions to specific parts of object images, considering the surrounding environment, and has been shown to improve the classification performance for concealed and obscured objects. Experimental results demonstrate that the proposed method leads to enhanced object classification compared to conventional methods for concealed and obscured objects.

Analysis of Livestock Vocal Data using Lightweight MobileNet (경량화 MobileNet을 활용한 축산 데이터 음성 분석)

  • Se Yeon Chung;Sang Cheol Kim
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.16-23
    • /
    • 2024
  • Pigs express their reactions to their environment and health status through a variety of sounds, such as grunting, coughing, and screaming. Given the significance of pig vocalizations, their study has recently become a vital source of data for livestock industry workers. To facilitate this, we propose a lightweight deep learning model based on MobileNet that analyzes pig vocal patterns to distinguish pig voices from farm noise and differentiate between vocal sounds and coughing. This model was able to accurately identify pig vocalizations amidst a variety of background noises and cough sounds within the pigsty. Test results demonstrated that this model achieved a high accuracy of 98.2%. Based on these results, future research is expected to address issues such as analyzing pig emotions and identifying stress levels.

A Study on the Effective Command Delivery of Commanders Using Speech Recognition Technology (국방 분야에서 전장 소음 환경 하에 음성 인식 기술 연구)

  • Yeong-hoon Kim;Hyun Kwon
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.161-165
    • /
    • 2024
  • Recently, speech recognition models have been advancing, accompanied by the development of various speech processing technologies to obtain high-quality data. In the defense sector, efforts are being made to integrate technologies that effectively remove noise from speech data in noisy battlefield situations and enable efficient speech recognition. This paper proposes a method for effective speech recognition in the midst of diverse noise in a battlefield scenario, allowing commanders to convey orders. The proposed method involves noise removal from noisy speech followed by text conversion using OpenAI's Whisper model. Experimental results show that the proposed method reduces the Character Error Rate (CER) by 6.17% compared to the existing method that does not remove noise. Additionally, potential applications of the proposed method in the defense are discussed.

Time-Series Forecasting Based on Multi-Layer Attention Architecture

  • Na Wang;Xianglian Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Time-series forecasting is extensively used in the actual world. Recent research has shown that Transformers with a self-attention mechanism at their core exhibit better performance when dealing with such problems. However, most of the existing Transformer models used for time series prediction use the traditional encoder-decoder architecture, which is complex and leads to low model processing efficiency, thus limiting the ability to mine deep time dependencies by increasing model depth. Secondly, the secondary computational complexity of the self-attention mechanism also increases computational overhead and reduces processing efficiency. To address these issues, the paper designs an efficient multi-layer attention-based time-series forecasting model. This model has the following characteristics: (i) It abandons the traditional encoder-decoder based Transformer architecture and constructs a time series prediction model based on multi-layer attention mechanism, improving the model's ability to mine deep time dependencies. (ii) A cross attention module based on cross attention mechanism was designed to enhance information exchange between historical and predictive sequences. (iii) Applying a recently proposed sparse attention mechanism to our model reduces computational overhead and improves processing efficiency. Experiments on multiple datasets have shown that our model can significantly increase the performance of current advanced Transformer methods in time series forecasting, including LogTrans, Reformer, and Informer.

Revolutionizing Brain Tumor Segmentation in MRI with Dynamic Fusion of Handcrafted Features and Global Pathway-based Deep Learning

  • Faizan Ullah;Muhammad Nadeem;Mohammad Abrar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.105-125
    • /
    • 2024
  • Gliomas are the most common malignant brain tumor and cause the most deaths. Manual brain tumor segmentation is expensive, time-consuming, error-prone, and dependent on the radiologist's expertise and experience. Manual brain tumor segmentation outcomes by different radiologists for the same patient may differ. Thus, more robust, and dependable methods are needed. Medical imaging researchers produced numerous semi-automatic and fully automatic brain tumor segmentation algorithms using ML pipelines and accurate (handcrafted feature-based, etc.) or data-driven strategies. Current methods use CNN or handmade features such symmetry analysis, alignment-based features analysis, or textural qualities. CNN approaches provide unsupervised features, while manual features model domain knowledge. Cascaded algorithms may outperform feature-based or data-driven like CNN methods. A revolutionary cascaded strategy is presented that intelligently supplies CNN with past information from handmade feature-based ML algorithms. Each patient receives manual ground truth and four MRI modalities (T1, T1c, T2, and FLAIR). Handcrafted characteristics and deep learning are used to segment brain tumors in a Global Convolutional Neural Network (GCNN). The proposed GCNN architecture with two parallel CNNs, CSPathways CNN (CSPCNN) and MRI Pathways CNN (MRIPCNN), segmented BraTS brain tumors with high accuracy. The proposed model achieved a Dice score of 87% higher than the state of the art. This research could improve brain tumor segmentation, helping clinicians diagnose and treat patients.

Comparison of artificial intelligence models reconstructing missing wind signals in deep-cutting gorges

  • Zhen Wang;Jinsong Zhu;Ziyue Lu;Zhitian Zhang
    • Wind and Structures
    • /
    • v.38 no.1
    • /
    • pp.75-91
    • /
    • 2024
  • Reliable wind signal reconstruction can be beneficial to the operational safety of long-span bridges. Non-Gaussian characteristics of wind signals make the reconstruction process challenging. In this paper, non-Gaussian wind signals are converted into a combined prediction of two kinds of features, actual wind speeds and wind angles of attack. First, two decomposition techniques, empirical mode decomposition (EMD) and variational mode decomposition (VMD), are introduced to decompose wind signals into intrinsic mode functions (IMFs) to reduce the randomness of wind signals. Their principles and applicability are also discussed. Then, four artificial intelligence (AI) algorithms are utilized for wind signal reconstruction by combining the particle swarm optimization (PSO) algorithm with back propagation neural network (BPNN), support vector regression (SVR), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM), respectively. Measured wind signals from a bridge site in a deep-cutting gorge are taken as experimental subjects. The results showed that the reconstruction error of high-frequency components of EMD is too large. On the contrary, VMD fully extracts the multiscale rules of the signal, reduces the component complexity. The combination of VMD-PSO-Bi-LSTM is demonstrated to be the most effective among all hybrid models.

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

Feasibility and performance limitations of Supercritical carbon dioxide direct-cycle micro modular reactors in primary frequency control scenarios

  • Seongmin Son;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1254-1266
    • /
    • 2024
  • This study investigates the application of supercritical carbon dioxide (S-CO2) direct-cycle micro modular reactors (MMRs) in primary frequency control (PFC), which is a scenario characterized by significant load fluctuations that has received less attention compared to secondary load-following. Using a modified GAMMA + code and a deep neural network-based turbomachinery off-design model, the authors conducted an analysis to assess the behavior of the reactor core and fluid system under different PFC scenarios. The results indicate that the acceptable range for sudden relative electricity output (REO) fluctuations is approximately 20%p which aligns with the performance of combined-cycle gas turbines (CCGTs) and open-cycle gas turbines (OCGTs). In S-CO2 direct-cycle MMRs, the control of the core operates passively within the operational range by managing coolant density through inventory control. However, when PFC exceeds 35%p, system control failure is observed, suggesting the need for improved control strategies. These findings affirm the potential of S-CO2 direct-cycle MMRs in PFC operations, representing an advancement in the management of grid fluctuations while ensuring reliable and carbon-free power generation.

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.