Acknowledgement
Authors would like to express their gratitude to the financial support from the Hainan Provincial Natural Science Foundation of China (Grant Number 520CXTD433); They are also indebted to the National Natural Science Foundation of China (Grant Number 51938012, 52268073 and 52068020).
References
- Antonanzas-Torres, F., Urraca, R. and Antonanzas, J., Fernandez-Ceniceros, J. and Martinez-de-Pison, F. (2015), "Generation of daily global solar irradiation with support vector machines for regression", Energ. Convers. Manage., 96, 277-286. https://doi.org/10.1016/j.enconman.2015.02.086.
- Barbounis, T., Theocharis, J., Alexiadis, M. and Dokopoulos, P. (2006), "Long-term wind speed and power forecasting using local recurrent neural network models", IEEE T. Energy Conver., 21(1), 273-284. https://doi.org/10.1109/TEC.2005.847954.
- Cadenas, E. and Rivera, R. (2010), "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model", Renew. Energ., 35(12), 2732-2738. https://doi.org/10.1016/j.renene.2010.04.022.
- Dragomiretskiy, K. and Zosso, D. (2014), "Variational Mode Decomposition", IEEE T. Signal Proces., 62(3), 531-544. https://doi.org/10.1109/TSP.2013.2288675
- Fu, W., Wang, K., Tan, J. and Zhang, K. (2020), "A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting", Energ. Convers. Manage., 205, 112461. https://doi.org/10.1016/j.enconman.2019.112461.
- Fuentealba, P., Illanes, A. and Ortmeier, F. (2019), "Cardiotocographic signal feature extraction through CEEMDAN and time-varying autoregressive spectral-based analysis for fetal welfare assessment", IEEE Access, 7(1), 159754-159772. https://doi.org/10.1109/ACCESS.2019.2950798.
- Georgilakis, P. (2008), "Technical challenges associated with the integration of wind power into power systems", Renew. Sust. Energ. Rev., 12(3), 852-863. https://doi.org/10.1016/j.rser.2006.10.007.
- He J., Yu C., Li Y. and Xiang H. (2020), "Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning", Energ. Convers. Manage., 205, 112418. https://doi.org/10.1016/j.enconman.2019.112418.
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
- Hong, Y. and Rioflorido, C. (2019), "A hybrid deep learning-based neural network for 24-h ahead wind power forecasting", Appl. Energ., 250, 530-539. https://doi.org/10.1016/j.apenergy.2019.05.044.
- Hu, J., Wang, J. and Zeng, G. (2013), "A hybrid forecasting approach applied to wind speed time series", Renew. Energ., 60, 185-194. https://doi.org/10.1016/j.renene.2013.05.012.
- Hu W.C., Cheng B.L., Yang Q.S., Liu Z.Q., Yuan Z.T., Li, K. and Zhang, M.J. (2023), "A novel two-layer hybrid model for ultra-short-term wind speed prediction based on SSP and BOLSTM", Wind Struct., 36(5), 293-305. https://doi.org/10.12989/was.2023.36.5.293.
- Huang, N., Shen, Z., Long, S., Wu, M., Shih, H., Zheng, Q., Yen, N., Tung, C. and Liu, H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis", Proc. R. Soc. A-Math. Phy. Eng. Sci., 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
- Jiang P. and Li C. (2018), "Research and application of an innovative combined model based on a modified optimization algorithm for wind speed forecasting", Measurement, 124, 395-412. https://doi.org/10.1016/j.measurement.2018.04.014.
- Karim, F., Majumdar, S. and Darabi, H. (2019), "Insights into LSTM Fully Convolutional Networks for Time Series Classification", IEEE Access, 7, 67718-67725, https://doi.org/10.1109/ACCESS.2019.2916828.
- Kennedy, J. and Eberhart, R. (1995), "Particle Swarm Optimization", Icnn95-international Conference on Neural Networks. IEEE.
- Khosravi, A., Machado, L. and Nunes, R. (2018), "Time-series prediction of wind speed using machine learning algorithms, A case study Osorio wind farm", Brazil. Appl. Energ., 224, 550-566. https://doi.org/10.1016/j.apenergy.2018.05.043.
- Kiplangat, D., Asokan, K. and Kumar, K. (2016), "Improved week-ahead predictions of wind speed using simple linear models with wavelet decomposition", Renew. Energ., 93, 38-44, https://doi.org/10.1016/j.renene.2016.02.054.
- Li, L., Zhao, X., Tseng, M., L. and Tan, R. (2020(a)), "Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm", J. Clean. Prod., 242, 118447. https://doi.org/10.1016/j.jclepro.2019.118447.
- Li, J.L., Song, Z.H., Wang, X.F., Wang, Y.R. and Jia, Y.Y. (2022), "A novel offshore wind farm typhoon wind speed prediction model based on PSO-Bi-LSTM improved by VMD", Energy, 251, 123848. https://doi.org/10.1016/j.energy.2022.123848.
- Li, S., Liu, X. and Lin, A., (2020(b)), "Fractional frequency hybrid model based on EEMD for financial time series forecasting", Commun. Nonlinear Sci. Numer. Simul., 89, 105281. https://doi.org/10.1016/j.cnsns.2020.105281.
- Li, W., Jia, X., Li, X., Wang, Y. and Lee, J. (2021), "A Markov model for short term wind speed prediction by integrating the wind acceleration information", Renew. Energ., 164, 242-53. https://doi.org/10.1016/j.renene.2020.09.031.
- Li, Y., Yin, J.T., Chen, F.B. and Li, Q.S. (2023), "Machine learning-based prediction of wind forces on CAARC standard tall buildings", Wind Struct., 36(6) 355-366. https://doi.org/10.12989/was.2023.36.6.355.
- Liao, H., Jing, H., Ma, C., Tao, Q. and Li, Z., (2020), "Field measurement study on turbulence field by wind tower and Windcube Lidar in mountain valley", J. Wind Eng. Ind. Aerod., 197, 104090. https://doi.org/10.1016/j.jweia.2019.104090.
- Lim, J., Kim, S., Kim, H. and Kim, Y. (2022), "Long short-term memory (LSTM)-based wind speed prediction during a typhoon for bridge traffic control", J. Wind Eng. Ind. Aerod., 220, 104778. https://doi.org/10.1016/j.jweia.2021.104788
- Liu, H., Duan, Z., Wu, H.P., Li, Y.F. and Dong, S.Y. (2019(a)), "Wind speed forecasting models based on data decomposition, feature selection and group method of data handling network", Measurement, 148, 106971. https://doi.org/10.1016/j.measurement.2019.106971.
- Liu, H., Tian, H., Pan, D. and Li, Y. (2013), "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks", Appl. Energy., 107, 191-208. https://doi.org/10.1016/j.apenergy.2013.02.002.
- Liu, H., Yang, R., Wang, T. and Zhang, L. (2021), "A hybrid neural network model for short-term wind speed forecasting based on decomposition, multi-learner ensemble, and adaptive multiple error corrections", Renew. Energ., 165, 573-594. https://doi.org/10.1016/j.renene.2020.11.002.
- Liu, H., Mi, X., Li, Y., Duan, Z. and Xu, Y. (2019(b)), "Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression", Renew. Energ., 143, 842-854. https://doi.org/10.1016/j.renene.2019.05.039.
- Liu, M., Cao, Z., Zhang, J., Wang, L., Huang, C. and Luo X. (2020), "Short-term wind speed forecasting based on the Jaya-SVM model", Int. J. Electr. Power Energy Syst., 121, 106056. https://doi.org/10.1016/j.ijepes.2020.106056.
- Noorollahi, Y., Jokar, M. and Kalhor, A. (2016), "Using artificial neural networks for temporal and spatial wind speed forecasting in Iran", Energ. Convers. Manage., 115, 17-25. https://doi.org/10.1016/j.enconman.2016.02.041.
- Pei, S., Qian, H., Zhang, Z., Yao, L., Wang, Y., Wang, C., Liu, Y., Jiang, Z., Zhou, J. and Yi, T. (2019), "Wind speed prediction method based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory network", Energ. Convers. Manage., 196, 779-792. https://doi.org/10.1016/j.enconman.2019.06.041.
- Qian, Z., Pei, Y., Zareipour, H. and Chen, N.Y. (2019), "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications", Appl. Energ., 235, 939-953. https://doi.org/10.1016/j.apenergy.2018.10.080.
- Ren, Y., Suganthan, P. and Srikanth, N. (2016), "A novel empirical mode decomposition with support vector regression for wind speed forecasting", IEEE T. Neur. Net. Lear Syst., 27(8), 1793-1798. https://doi.org/10.1109/TNNLS.2014.2351391.
- Rumelhart, D. and Mcclelland, J. (1986), Parallel Distributed Processing, MIT Press, Cambridge, USA.
- Smola, A. and Lkopf, B. (2004), "A tutorial on support vector regression", Stat. Comput., 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88.
- Tascikaraoglu, A. and Uzunoglu, M. (2014), "A review of combined approaches for prediction of short-term wind speed and power", Renew. Sust. Energ. Rev., 34, 243-254. https://doi.org/10.1016/j.rser.2014.03.033.
- Vapnik, V. (1995), The Nature of Statistical Learning Theory, Springer, New York, USA.
- Wang, S., Zhang, N., Wu, L. and Wang, Y. (2016), "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method", Renew. Energ., 94, 629-636. https://doi.org/10.1016/j.renene.2016.03.103.
- Yu, C., Li, Y., Xiang, H. and Zhang, M. (2018), "Data mining-assisted short-term wind speed forecasting by wavelet packet decomposition and Elman neural network", J. Wind Eng. Ind. Aerod., 178, 136-143. https://doi.org/10.1016/j.jweia.2018.01.020.
- Yu, C., Li, Y., Zhao, L., Qian, C. and Xun, Y. (2023), "A novel time-frequency recurrent network and its advanced version for short-term wind speed predictions", Energy, 262, 125556. https://doi.org/10.1016/j.energy.2022.125556.
- Zhang, C., Li, R., Shi, H. and Li, F. (2020(a)), "Deep learning for day-ahead electricity price forecasting", IET Smart Grid, 3(4), 462-469. https://doi.org/10.1049/iet-stg.2019.0258.
- Zhang, C., Wei, H., Zhao, J., Liu, T., Zhu, T. and Zhang, K. (2016(a)), "Short-term wind speed forecasting using empirical mode decomposition and feature selection", Renew. Energ., 96, 727-737. https://doi.org/10.1016/j.renene.2016.05.023.
- Zhang, C., Wei, H., Zhao, X., Liu, T. and Zhang K. (2016(b)), "A Gaussian process regression based hybrid approach for short-term wind speed prediction", Energ. Convers. Manage., 126, 1084-1092. https://doi.org/10.1016/j.enconman.2016.08.086.
- Zhang, Y., Chen, B., Pan, G. and Zhao, Y. (2019(a)), "A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting", Energ. Convers. Manage., 195, 180-197, https://doi.org/10.1016/j.enconman.2019.05.005.
- Zhang, Y., Pan, G., Chen, B., Han, J., Zhao, Y. and Zhang, C. (2020(b)), "Short-term wind speed prediction model based on GA-ANN improved by VMD", Renew. Energ., 156, 1373-1388. https://doi.org/10.1016/j.renene.2019.12.047.
- Zhang, Y., Zhao, Y. and Gao, S. (2019(b)), "A novel hybrid model for wind speed prediction based on VMD and neural network considering atmospheric uncertainties", IEEE Access, 7, 60322-60332. https://doi.org/10.1109/ACCESS.2019.2915582.
- Zhang, Z., Ye, L., Qin, H., Liu, Y., Wang, C., Yu, X., Yin, X. and Li, J. (2019(c)), "Wind speed prediction method using shared weight long short-term memory network and gaussian process regression", Appl. Energ., 247, 270-284. https://doi.org/10.1016/j.apenergy.2019.04.047.
- Zhao, X., Liu, J., Yu, D. and Chang, J. (2018), "One-day-ahead probabilistic wind speed forecast based on optimized numerical weather prediction data", Energ. Convers. Manage., 164, 560-569. https://doi.org/10.1016/j.enconman.2018.03.030.
- Zhou, J., Shi, J. and Li, G. (2011), "Fine tuning support vector machines for short-term wind speed forecasting", Energ. Convers. Manage., 52(4), 1990-1998, https://doi.org/10.1016/j.enconman.2010.11.007.
- Zhou, Y. and Huang, M. (2016), "Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model", Microelectron. Reliab., 65, 265-273. https://doi.org/10.1016/j.microrel.2016.07.151.