References
- Adarsh, S., Dhanya, R., Krishna, G., Merlin, R. and Tina, J. (2012), "Prediction of ultimate bearing capacity of cohesionless soils using soft computing techniques", ISRN Artificial Intelligence, 2012, 1-10. https://doi.org/10.5402/2012/628496
- Alessio, G., Alfonsi, L., Brunori, C.A., Burrato, P., Casula, G., Cinti, F.R., Civico, R., Colini, L., Cucci, L., De Martini, P.M., Falcucci, E., Galadini, F., Gaudiosi, G., Gori, S., Mariucci, M. T., Montone, P., Moro, M., Nappi, R., Nardi, A. andVillani, F. (2013), "Liquefaction phenomena associated with the Emilia earthquake sequence of May-June 2012 (Northern Italy)", Nat. Hazard. Earth System Sci., 13(4), 935-947. https://doi.org/10.5194/nhess-13-935-2013.
- Alibrahim, H. and Ludwig, S.A. (2021), "Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian optimization", Proceedings of the 2021 IEEE Congress on Evolutionary Computation (CEC).
- Ambraseys, N.N. (1988), "Engineering seismology: Part II", Earthq. Eng. Struct. D., 17(1), 51-105. https://doi.org/10.1002/eqe.4290170102.
- Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput, Mater. Continua, 59(1). https://doi.org/10.32604/cmc.2019.06641
- Ardeshiri-Lajimi, S., Yazdani, M. and Assadi-Langroudi, A. (2016), "A study on the liquefaction risk in seismic design of foundations", Geomech. Eng., 11(6), 805-820. https://doi.org/10.12989/gae.2016.11.6.805.
- Armaghani, D.J., Harandizadeh, H., Momeni, E., Maizir, H. and Zhou, J. (2022), "An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity", Artif. Intell. Rev., 55(3), 2313-2350. https://doi.org/10.1007/s10462-021-10065-5.
- Aydan, O ., Ulusay, R. and Kumsar, H. (2000), "Liquefaction phenomenon in the earthquakes of Turkey, including recent Erzincan, Dinar and Adana-Ceyhan earthquakes", Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, 30 January -4 February.
- Bai, X.D., Cheng, W.C., Ong, D.E.L. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
- Bengio, Y. (2000), "Gradient-based optimization of hyperparameters", Neural Comput., 12(8), 1889-1900. https://doi.org/10.1162/089976600300015187
- Bergstra, J. and Bengio, Y. (2012), "Random search for hyper-parameter optimization", J. Machine Learning Res., 13(2).
- Bottou, L. (2010). "Large-scale machine learning with stochastic gradient descent", Proceedings of the COMPSTAT'2010: 19th International Conference on Computational Statistics, Paris France, August 22-27, 2010 Keynote, Invited and Contributed Papers.
- Pirrotta, C., Barbano, M.S., Guarnieri, P. and Gerardi, F. (2009), "A new dataset and empirical relationships between magnitude/intensity and epicentral distance for liquefaction in central-eastern Sicily", Ann. Geophys., 50(6), 763-774. https://doi.org/10.4401/ag-3055.
- Cetin, K.O., Mylonakis, G., Sextos, A. and Stewart, J.P. (2022), "Reconnaissance of 2020 M 7.0 Samos Island (Aegean Sea) earthquake", Bull. Earthq. Eng., 20(14), 7707-7712. https://doi.org/10.1007/s10518-021-01212-y.
- Chen, T. and Guestrin, C. (2016), "Xgboost: A scalable tree boosting system", Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, August.
- Dibike, Y.B., Velickov, S., Solomatine, D. and Abbott, M.B. (2001), "Model induction with support vector machines: introduction and applications", J. Comput. Civil Eng., 15(3), 208-216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208).
- Galli, P. (2000), "New empirical relationships between magnitude and distance for liquefaction", Tectonophysics, 324(3), 169-187. https://doi.org/10.1016/S0040-1951(00)00118-9.
- Gazetas, G. and Botsis, J. (1981), "Local soil effects and liquefaction in the 1978 Thessaloniki earthquakes", Proceedings of the International Conference on Recent Advances Geotechnical Earthquake Engineering & Soil Dynamics. University of Missouri-Rolla, Rolla, Missouri, April.
- Goh, A.T.C. and Goh, S.H. (2007), "Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data", Comput. Geotech., 34(5), 410-421. https://doi.org/10.1016/j.compgeo.2007.06.001.
- Guo, X.C., Yang, J.H., Wu, C.G., Wang, C.Y. and Liang, Y.C. (2008), "A novel LS-SVMs hyper-parameter selection based on particle swarm optimization", Neurocomput., 71(16), 3211-3215. https://doi.org/10.1016/j.neucom.2008.04.027.
- Hoang, N.D. and Bui, D.T. (2018), "Predicting earthquake-induced soil liquefaction based on a hybridization of kernel Fisher discriminant analysis and a least squares support vector machine: A multi-dataset study", Bull. Eng. Geol. Environ., 77(1), 191-204. https://doi.org/10.1007/s10064-016-0924-0.
- Hochreiter, S. and Schmidhuber, J. (1997), "Long short-term memory", Neural Comput., 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735.
- Hu, J. (2021), "Data cleaning and feature selection for gravelly soil liquefaction", Soil Dyn. Earthq. Eng., 145, 106711. https://doi.org/10.1016/j.soildyn.2021.106711.
- Hu, J. (2022a), "Empirical relationships between earthquake magnitude and maximum distance based on the extended global liquefaction-induced damage cases", Acta Geotechnica, 18, 1-15. https://doi.org/10.1007/s11440-022-01637-y.
- Hu, J. (2022b), "The database of earthquake-induced liquefaction", Mendeley Data, VI. https://doi.org/10.17632/3d2483vxb2.1.
- Hu, J. and Liu, H. (2019), "Bayesian network models for probabilistic evaluation of earthquake-induced liquefaction based on CPT and Vs databases", Eng. Geol., 254(1), 76-88. https://doi.org/10.1016/j.enggeo.2019.04.003.
- James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013), An introduction to statistical learning, 112, Springer.
- Javadi, A.A. and Rezania, M. (2009), "Applications of artificial intelligence and data mining techniques in soil modeling", Geomech. Eng., 1(1), 53-74. https://doi.org/10.12989/gae.2009.1.1.053.
- Jiang, W., Li, Z.Y. and Lu, K.Y. (2019), "Preliminary analysis of liquefaction characteristics induced by the Songyuan earthquake of May 28 in Jilin", China, 39(3), 52-60. https://doi.org/10.13197/j.eeev.2019.03.52.Jiangw.006.
- Kamran, M., Shahani, N.M. and Armaghani, D.J. (2022), "Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches", Geomech. Eng., 30(2), 107-121. https://doi.org/10.12989/gae.2022.30.2.107.
- Kumar, D.R., Samui, P. and Burman, A. (2022), "Prediction of probability of liquefaction using soft computing techniques", J. Institution of Engineers (India): Series A, 103(4), 1195-1208. https://doi.org/10.1007/s40030-022-00683-9
- Kumar, K., Samui, P. and Choudhary, S.S. (2023), "State parameter based liquefaction probability evaluation", Int. J. Geosynthetics Ground Eng., 9(6), 76. https://doi.org/10.1007/s40891-023-00495-2.
- Kumar, P., Rao, B., Burman, A., Kumar, S. and Samui, P. (2023), "Spatial variation of permeability and consolidation behaviors of soil using ordinary kriging method", Groundwater for Sustain. Development, 20, 100856. https://doi.org/10.1016/j.gsd.2022.100856.
- Kumar, P. and Samui, P. (2022), "Design of an energy pile based on CPT data using soft computing techniques", Infrastructures, 7(12), 169. https://doi.org/10.3390/infrastructures7120169.
- Kuribayashi, E. and Tatsuoka, F. (1975), "Brief review of liquefaction during earthquakes in Japan", Soils Found., 15(4), 81-92. https://doi.org/10.3208/sandf1972.15.4_81.
- LeCun, Y. and Bengio, Y. (1995), "Convolutional networks for images, speech, and time series. In The handbook of brain theory and neural networks. The MIT Press,Cambridge, Massachusetts, USA.
- Lee, C.Y. and Chern, S.G. (2013). Application of a support vector machine for liquefaction assessment", J. Mar. Sci.Tech. (Taiwan), 21(3), 318-324. https://doi.org/10.6119/JMST-012-0518-3.
- Liu, L.L., Yang, C. and Wang, X.M. (2021), "Landslide susceptibility assessment using feature selection based machine learning models", Geomech. Eng., 25(1), 1-16. https://doi.org/10.12989/gae.2021.25.1.001
- Mahmoodzadeh, A., Taghizadeh, M., Mohammed, A.H., Ibrahim, H.H., Samadi, H., Mohammadi, M. and Rashidi, S. (2022), "Tunnel wall convergence prediction using optimized LSTM deep neural network", Geomech. Eng., 31(6), 545-556. https://doi.org/10.12989/gae.2022.31.6.545.
- Ochoa, L.H., Nino, L.F. and Vargas, C.A. (2018), "Fast estimation of earthquake epicenter distance using a single seismological station with machine learning techniques", Dyna, 85(204), 161-168. https://doi.org/10.15446/dyna.v85n204.68408
- Pal, M. and Deswal, S. (2008), "Modeling pile capacity using support vector machines and generalized regression neural network", J. Geotech. Geoenviron. Eng., 134(7), 1021-1024. https://doi.org/10.1061/(asce)1090-0241(2008)134:7(1021).
- Papadopoulos, G.A. and Lefkopoulos, G. (1993), "Magnitude-distance relations for liquefaction in soil from earthquakes", Bull. Seismol. Soc. Am., 83(3), 925-938. https://doi.org/10.1785/bssa0840062019.
- Papathanassiou, G., Pavlides, S., Christaras, B. and Pitilakis, K. (2005), "Liquefaction case histories and empirical relations of earthquake magnitude versus distance from the broader Aegean region", J. Geodynam., 40(2-3), 257-278. https://doi.org/10.1016/j.jog.2005.07.007.
- Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Method. Appl. M., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
- Samui, P. (2007), "Seismic liquefaction potential assessment by using relevance vector machine", Earthq. Eng. Eng. Vib., 6, 331-336. https://doi.org/10.1007/s11803-007-0766-7
- Samui, P. and Sitharam, T.G. (2008), "Least-square support vector machine applied to settlement of shallow foundations on cohesionless soils", Int. J. Numer. Anal. Method. Geomech., 32(17), 2033-2043. https://doi.org/10.1002/nag.731.
- Schuster, M. and Paliwal, K.K. (1997), "Bidirectional recurrent neural networks", IEEE T. Signal Pr., 45(11), 2673-2681. https://doi.org/10.1109/78.650093
- Talwani, P. and Cox, J. (1985), "Paleoseismic evidence for recurrence of earthquakes near Charleston, South Carolina", Science, 229(4711), 379-381. https://doi.org/10.1126/science.229.4711.379.
- Wang, C.Y., Wong, A., Dreger, D.S. and Manga, M. (2006), "Liquefaction limit during earthquakes and underground explosions: Implications on ground-motion attenuation", Bull. Seismol. Soc. Am., 96(1), 355-363. https://doi.org/10.1785/0120050019
- Xu, G., Liu, Z., Sun, Y., Wang, X., Lin, L. and Ren, Y. (2016), "Experimental characterization of storm liquefaction deposits sequences", Mar. Geol., 382, 191-199. https://doi.org/10.1016/j.margeo.2016.10.015.
- Xu, X., Xu, G., Yang, J., Xu, Z. and Ren, Y. (2021), "Field observation of the wave-induced pore pressure response in a silty soil seabed", Geo-Marine Lett., 41(1), 13. https://doi.org/10.1007/s00367-020-00680-6