• Title/Summary/Keyword: extreme gradient boosting

Search Result 54, Processing Time 0.021 seconds

Cognitive Impairment Prediction Model Using AutoML and Lifelog

  • Hyunchul Choi;Chiho Yoon;Sae Bom Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.53-63
    • /
    • 2023
  • This study developed a cognitive impairment predictive model as one of the screening tests for preventing dementia in the elderly by using Automated Machine Learning(AutoML). We used 'Wearable lifelog data for high-risk dementia patients' of National Information Society Agency, then conducted using PyCaret 3.0.0 in the Google Colaboratory environment. This study analysis steps are as follows; first, selecting five models demonstrating excellent classification performance for the model development and lifelog data analysis. Next, using ensemble learning to integrate these models and assess their performance. It was found that Voting Classifier, Gradient Boosting Classifier, Extreme Gradient Boosting, Light Gradient Boosting Machine, Extra Trees Classifier, and Random Forest Classifier model showed high predictive performance in that order. This study findings, furthermore, emphasized on the the crucial importance of 'Average respiration per minute during sleep' and 'Average heart rate per minute during sleep' as the most critical feature variables for accurate predictions. Finally, these study results suggest that consideration of the possibility of using machine learning and lifelog as a means to more effectively manage and prevent cognitive impairment in the elderly.

Predicting Deformation Behavior of Additively Manufactured Ti-6Al-4V Based on XGB and LGBM (XGB 및 LGBM을 활용한 Ti-6Al-4V 적층재의 변형 거동 예측)

  • Cheon, S.;Yu, J.;Kim, J.G.;Oh, J.S.;Nam, T.H.;Lee, T.
    • Transactions of Materials Processing
    • /
    • v.31 no.4
    • /
    • pp.173-178
    • /
    • 2022
  • The present study employed two different machine-learning approaches, the extreme gradient boosting (XGB) and light gradient boosting machine (LGBM), to predict a compressive deformation behavior of additively manufactured Ti-6Al-4V. Such approaches have rarely been verified in the field of metallurgy in contrast to artificial neural network and its variants. XGB and LGBM provided a good prediction for elongation to failure under an extrapolated condition of processing parameters. The predicting accuracy of these methods was better than that of response surface method. Furthermore, XGB and LGBM with optimum hyperparameters well predicted a deformation behavior of Ti-6Al-4V additively manufactured under the extrapolated condition. Although the predicting capability of two methods was comparable, LGBM was superior to XGB in light of six-fold higher rate of machine learning. It is also noted this work has verified the LGBM approach in solving the metallurgical problem for the first time.

A robust approach in prediction of RCFST columns using machine learning algorithm

  • Van-Thanh Pham;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.153-173
    • /
    • 2023
  • Rectangular concrete-filled steel tubular (RCFST) column, a type of concrete-filled steel tubular (CFST), is widely used in compression members of structures because of its advantages. This paper proposes a robust machine learning-based framework for predicting the ultimate compressive strength of RCFST columns under both concentric and eccentric loading. The gradient boosting neural network (GBNN), an efficient and up-to-date ML algorithm, is utilized for developing a predictive model in the proposed framework. A total of 890 experimental data of RCFST columns, which is categorized into two datasets of concentric and eccentric compression, is carefully collected to serve as training and testing purposes. The accuracy of the proposed model is demonstrated by comparing its performance with seven state-of-the-art machine learning methods including decision tree (DT), random forest (RF), support vector machines (SVM), deep learning (DL), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and categorical gradient boosting (CatBoost). Four available design codes, including the European (EC4), American concrete institute (ACI), American institute of steel construction (AISC), and Australian/New Zealand (AS/NZS) are refereed in another comparison. The results demonstrate that the proposed GBNN method is a robust and powerful approach to obtain the ultimate strength of RCFST columns.

Nanotechnology in early diagnosis of gastro intestinal cancer surgery through CNN and ANN-extreme gradient boosting

  • Y. Wenjing;T. Yuhan;Y. Zhiang;T. Shanhui;L. Shijun;M. Sharaf
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.451-466
    • /
    • 2023
  • Gastrointestinal cancer (GC) is a prevalent malignant tumor of the digestive system that poses a severe health risk to humans. Due to the specific organ structure of the gastrointestinal system, both endoscopic and MRI diagnoses of GIC have limited sensitivity. The primary factors influencing curative efficacy in GIC patients are drug inefficacy and high recurrence rates in surgical and pharmacological therapy. Due to its unique optical features, good biocompatibility, surface effects, and small size effects, nanotechnology is a developing and advanced area of study for the detection and treatment of cancer. Because of its deep location and complex surgery, diagnosing and treating gastrointestinal cancer is very difficult. The early diagnosis and urgent treatment of gastrointestinal illness are enabled by nanotechnology. As diagnostic and therapeutic tools, nanoparticles directly target tumor cells, allowing their detection and removal. XGBoost was used as a classification method known for achieving numerous winning solutions in data analysis competitions, to capture nonlinear relations among many input variables and outcomes using the boosting approach to machine learning. The research sample included 300 GC patients, comprising 190 males (72.2% of the sample) and 110 women (27.8%). Using convolutional neural networks (CNN) and artificial neural networks (ANN)-EXtreme Gradient Boosting (XGBoost), the patients mean± SD age was 50.42 ± 13.06. High-risk behaviors (P = 0.070), age at diagnosis (P = 0.037), distant metastasis (P = 0.004), and tumor stage (P = 0.015) were shown to have a statistically significant link with GC patient survival. AUC was 0.92, sensitivity was 81.5%, specificity was 90.5%, and accuracy was 84.7 when analyzing stomach picture.

Development and Validation of MRI-Based Radiomics Models for Diagnosing Juvenile Myoclonic Epilepsy

  • Kyung Min Kim;Heewon Hwang;Beomseok Sohn;Kisung Park;Kyunghwa Han;Sung Soo Ahn;Wonwoo Lee;Min Kyung Chu;Kyoung Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1281-1289
    • /
    • 2022
  • Objective: Radiomic modeling using multiple regions of interest in MRI of the brain to diagnose juvenile myoclonic epilepsy (JME) has not yet been investigated. This study aimed to develop and validate radiomics prediction models to distinguish patients with JME from healthy controls (HCs), and to evaluate the feasibility of a radiomics approach using MRI for diagnosing JME. Materials and Methods: A total of 97 JME patients (25.6 ± 8.5 years; female, 45.5%) and 32 HCs (28.9 ± 11.4 years; female, 50.0%) were randomly split (7:3 ratio) into a training (n = 90) and a test set (n = 39) group. Radiomic features were extracted from 22 regions of interest in the brain using the T1-weighted MRI based on clinical evidence. Predictive models were trained using seven modeling methods, including a light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, with radiomics features in the training set. The performance of the models was validated and compared to the test set. The model with the highest area under the receiver operating curve (AUROC) was chosen, and important features in the model were identified. Results: The seven tested radiomics models, including light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, showed AUROC values of 0.817, 0.807, 0.783, 0.779, 0.767, 0.762, and 0.672, respectively. The light gradient boosting machine with the highest AUROC, albeit without statistically significant differences from the other models in pairwise comparisons, had accuracy, precision, recall, and F1 scores of 0.795, 0.818, 0.931, and 0.871, respectively. Radiomic features, including the putamen and ventral diencephalon, were ranked as the most important for suggesting JME. Conclusion: Radiomic models using MRI were able to differentiate JME from HCs.

Prediction of the Movement Directions of Index and Stock Prices Using Extreme Gradient Boosting (익스트림 그라디언트 부스팅을 이용한 지수/주가 이동 방향 예측)

  • Kim, HyoungDo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.9
    • /
    • pp.623-632
    • /
    • 2018
  • Both investors and researchers are attentive to the prediction of stock price movement directions since the accurate prediction plays an important role in strategic decision making on stock trading. According to previous studies, taken together, one can see that different factors are considered depending on stock markets and prediction periods. This paper aims to analyze what data mining techniques show better performance with some representative index and stock price datasets in the Korea stock market. In particular, extreme gradient boosting technique, proving itself to be the fore-runner through recent open competitions, is applied to the prediction problem. Its performance has been analyzed in comparison with other data mining techniques reported good in the prediction of stock price movement directions such as random forests, support vector machines, and artificial neural networks. Through experiments with the index/price datasets of 12 years, it is identified that the gradient boosting technique is the best in predicting the movement directions after 1 to 4 days with a few partial equivalence to the other techniques.

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

Mean fragmentation size prediction in an open-pit mine using machine learning techniques and the Kuz-Ram model

  • Seung-Joong Lee;Sung-Oong Choi
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.547-559
    • /
    • 2023
  • We evaluated the applicability of machine learning techniques and the Kuz-Ram model for predicting the mean fragmentation size in open-pit mines. The characteristics of the in-situ rock considered here were uniaxial compressive strength, tensile strength, rock factor, and mean in-situ block size. Seventy field datasets that included these characteristics were collected to predict the mean fragmentation size. Deep neural network, support vector machine, and extreme gradient boosting (XGBoost) models were trained using the data. The performance was evaluated using the root mean squared error (RMSE) and the coefficient of determination (r2). The XGBoost model had the smallest RMSE and the highest r2 value compared with the other models. Additionally, when analyzing the error rate between the measured and predicted values, XGBoost had the lowest error rate. When the Kuz-Ram model was applied, low accuracy was observed owing to the differences in the characteristics of data used for model development. Consequently, the proposed XGBoost model predicted the mean fragmentation size more accurately than other models. If its performance is improved by securing sufficient data in the future, it will be useful for improving the blasting efficiency at the target site.

Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation (콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.

Evaluating the Efficiency of Models for Predicting Seismic Building Damage (지진으로 인한 건물 손상 예측 모델의 효율성 분석)

  • Chae Song Hwa;Yujin Lim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.217-220
    • /
    • 2024
  • Predicting earthquake occurrences accurately is challenging, and preparing all buildings with seismic design for such random events is a difficult task. Analyzing building features to predict potential damage and reinforcing vulnerabilities based on this analysis can minimize damages even in buildings without seismic design. Therefore, research analyzing the efficiency of building damage prediction models is essential. In this paper, we compare the accuracy of earthquake damage prediction models using machine learning classification algorithms, including Random Forest, Extreme Gradient Boosting, LightGBM, and CatBoost, utilizing data from buildings damaged during the 2015 Nepal earthquake.