• Title/Summary/Keyword: neural network.

Search Result 11,766, Processing Time 0.039 seconds

Development and Evaluation of Machine Learning-based Prediction Models for Wastewater Treatment Plant (머신러닝 기반의 하수처리장 예측 모델 평가 및 개발)

  • Kyu Dae Shim;Hyo Sang Kim;Geun Soo Chang;Dong Kyun Kim;Young Mo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.499-499
    • /
    • 2023
  • 최근 컴퓨터 성능 향상과 새로운 머신러닝 알고리즘 개발됨에 따라, 각 분야별 연구자들이 이를 활용한 연구를 다양하게 수행하고 있으며, 하수처리시설의 경우에는 막대한 양의 운영자료가 축척됨에 따라 머신러닝을 활용한 다양한 연구가 가속화 되고 있다. 기존 하수처리장의 물리학적 모델은 적용된 영향 인자에 여러 가지 가정이 고려되어 모델 정확도가 부정확해지는 경향이 있었으며, 이러한 문제점을 보완하기 위해 하수처리장의 수집된 운영자료 및 머신러닝 기반의 예측 모델을 활용하여 예측 모델 정확도를 향상하는 선행 연구들이 진행되고 있다. A 하수처리장의 부지 내에 설치된 센서를 통하여 운영자료가 중앙제어실 서버에 실시간으로 저장되는 자료를 활용하여 NN (Neural Network), SVM (Support Vector Machine), RF (Random Forest) 등과 같은 다양한 머신러닝 모델을 적용하였고, 하수처리장 운영자료를 적용할 경우 어느 모델이 가장 높은 성능이 나타나는지 인사이트를 도출하고자 하였다. 금회 연구는 A 하수처리장을 대상으로 여러 머신러닝 기반 예측 모델을 개발하고, 각 모델의 예측정확도를 서로 평가함으로써, 머신러닝 모델 최적화를 수행할 수 있었다. 이번 연구에서 도출된 결과를 활용하여 하수처리장 예측 모델 최적화를 진행할 경우, 향후 비교적 짧은 시간에 하수처리장 머신러닝 기반 예측 모델 개발이 가능하다는 점에 의의가 있다.

  • PDF

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.

Human Normalization Approach based on Disease Comparative Prediction Model between Covid-19 and Influenza

  • Janghwan Kim;Min-Yong Jung;Da-Yun Lee;Na-Hyeon Cho;Jo-A Jin;R. Young-Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.32-42
    • /
    • 2023
  • There are serious problems worldwide, such as a pandemic due to an unprecedented infection caused by COVID-19. On previous approaches, they invented medical vaccines and preemptive testing tools for medical engineering. However, it is difficult to access poor medical systems and medical institutions due to disparities between countries and regions. In advanced nations, the damage was even greater due to high medical and examination costs because they did not go to the hospital. Therefore, from a software engineering-based perspective, we propose a learning model for determining coronavirus infection through symptom data-based software prediction models and tools. After a comparative analysis of various models (decision tree, Naive Bayes, KNN, multi-perceptron neural network), we decide to choose an appropriate decision tree model. Due to a lack of data, additional survey data and overseas symptom data are applied and built into the judgment model. To protect from thiswe also adapt human normalization approach with traditional Korean medicin approach. We expect to be possible to determine coronavirus, flu, allergy, and cold without medical examination and diagnosis tools through data collection and analysis by applying decision trees.

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

Comparison Study of the Performance of CNN Models for malicious code image classification (악성코드 이미지 분류를 위한 CNN 모델 성능 비교)

  • Kang, Chae-Hee;Oh, Eun-Bi;Lee, Seung-Eon;Lee, Hyun-Kyung;Kim, Sung-Wook
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.432-435
    • /
    • 2022
  • 최근 IT 산업의 지속적인 발전으로 사용자들을 위협하는 악성코드, 피싱, 랜섬웨어와 같은 사이버 공격 또한 계속해서 발전하고 더 지능화되고 있으며 변종 악성코드도 기하급수적으로 늘어나고 있다. 지금까지의 시그니처 패턴 기반의 탐지법으로는 이러한 방대한 양의 알려지지 않은 악성코드를 탐지할 수 없다. 따라서 CNN(Convolutional Neural Network)을 활용하여 악성코드를 탐지하는 기법들이 제안되고 있다. 이에 본 논문에서는 CNN 모델 중 낮은 인식 오류율을 지닌 모델을 선정하여 정확도(Accuracy)와 F1-score 평가 지표를 통해 비교하고자 한다. 두 가지의 악성코드 이미지화 방법을 사용하였으며, 2015 년 이후 ILSVRC 에서 우승을 차지한 모델들과, 추가로 2019 년에 발표된 EfficientNet 을 사용하여 악성코드 이미지를 분류하였다. 그 결과 2 바이트를 한 쌍의 좌표로 변환하여 생성한 256 * 256 크기의 악성코드 이미지를 ResNet-152 모델을 이용해 분류하는 것이 우수한 성능을 보임을 실험적으로 확인하였다.

Transformer-based Language Recognition Technique for Big Data (빅데이터를 위한 트랜스포머 기반의 언어 인식 기법)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo;Lee, Soo-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.267-268
    • /
    • 2022
  • Recently, big data analysis can use various techniques according to the development of machine learning. Big data collected in reality lacks an automated refining technique for the same or similar terms based on semantic analysis of the relationship between words. Big data is usually in the form of sentences, and morphological analysis or understanding of the sentences is required. Accordingly, NLP, a technique for analyzing natural language, can understand the relationship of words and sentences. In this paper, we study the advantages and disadvantages of Transformers and Reformers, which are techniques that complement the disadvantages of RNN, which is a time series approach to big data.

  • PDF

DEVELOPMENT OF AN INTEGRATED GRADER FOR APPLES

  • Park, K. H.;Lee, K. J.;Park, D. S.;Y. S. Han
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.513-520
    • /
    • 2000
  • An integrated grader which measures soluble solid content, color and weight of fresh apples was developed by NAMRI. The prototype grader consists of the near infrared spectroscopy and machine vision system. Image processing system and an algorithm to evaluate color were developed to speed up the color evaluation of apples. To avoid the light glare and specular reflection, an half-spherical illumination chamber was designed and fabricated to detect the color images of spherical-shaped apples more precisely. A color revision model based on neural network was developed. Near-infrared(NIR) spectroscopy system using NIR reflectance method developed by Lee et al(1998) of NAMRI was used to evaluate soluble solid content. In order to observe the performance of the grader, tests were conducted on conditions that there are 3 classes in weight sorting, 4 classes in combination of color and soluble solid content, and thus 12 classes in combined sorting. The average accuracy in weight, color and soluble solid content is more than about 90 % with the capacity of 3 fruits per second.

  • PDF

POSITION RECOGNITION AND QUALITY EVALUATION OF TOBACCO LEAVES VIA COLOR COMPUTER VISION

  • Lee, C. H.;H. Hwang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.569-577
    • /
    • 2000
  • The position of tobacco leaves is affluence to the quality. To evaluate its quality, sample leaves was collected according to the position of attachment. In Korea, the position was divided into four classes such as high, middle, low and inside positioned leaves. Until now, the grade of standard sample was determined by human expert from korea ginseng and tobacco company. Many research were done by the chemical and spectrum analysis using NIR and computer vision. The grade of tobacco leaves mainly classified into 5 grades according to the attached position and its chemical composition. In high and low positioned leaves shows a low level grade under grade 3. Generally, inside and medium positioned leaf has a high level grade. This is the basic research to develop a real time tobacco leaves grading system combined with portable NIR spectrum analysis system. However, this research just deals with position recognition and grading using the color machine vision. The RGB color information was converted to HSI image format and the sample was all investigated using the bundle of tobacco leaves. Quality grade and position recognition was performed through well known general error back propagation neural network. Finally, the relationship about attached leaf position and its grade was analyzed.

  • PDF

Efficacy of nano-drugs in muscle injury rehabilitation and fatigue relief

  • Zicheng Wang;Yanqing Liu;Haibo Wang;Dai Liu;Niuniu Yang;Mengying Lv
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.17-25
    • /
    • 2023
  • Gold nanoparticles have recognized a promising drug carriers in many diseases. These nanoparticles could carry anti-inflammatory drugs in the case of muscle injury and for fatigue relief. On the other hand, specific surface of this kind of nanoparticles could be critical in amount of drug they could carry. Therefore, in this study, we explore different methodology and influencing parameters on the specific surface of gold nanoparticles. After specifying the main parameters, different machine learning and artificial neural network are adopted to model the effects of different parameters. Furthermore, response surface methodology is utilized to obtain a quadrilateral relationship between different parameters and specific surface. The results indicate that concentration of the gold salt solution is the most important parameter in increasing the size of gold nanoparticle and, as a consequence, increasing specific surface. Moreover, the ability of gold nanoparticles in prolonging retention of the drugs is discussed in detail.

Performance Improvement of SRGAN's Discriminator via Mutual Distillation (상호증류를 통한 SRGAN 판별자의 성능 개선)

  • Yeojin Lee;Hanhoon Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.160-165
    • /
    • 2022
  • Mutual distillation is a knowledge distillation method that guides a cohort of neural networks to learn cooperatively by transferring knowledge between them, without the help of a teacher network. This paper aims to confirm whether mutual distillation is also applicable to super-resolution networks. To this regard, we conduct experiments to apply mutual distillation to the discriminators of SRGANs and analyze the effect of mutual distillation on improving SRGAN's performance. As a result of the experiment, it was confirmed that SRGANs whose discriminators shared their knowledge through mutual distillation can produce super-resolution images enhanced in both quantitative and qualitative qualities.