DOI QR코드

DOI QR Code

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu (Chengdu University) ;
  • Hao-Ran Liu (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology) ;
  • Lan Chang (The Engineering & Technical College of Chengdu University of Technology) ;
  • Yu-Xin Cheng (The Engineering & Technical College of Chengdu University of Technology) ;
  • Zhuo Zuo (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology) ;
  • Peng Li (The Engineering & Technical College of Chengdu University of Technology)
  • Received : 2022.03.13
  • Accepted : 2023.04.20
  • Published : 2023.09.25

Abstract

In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

Keywords

References

  1. Lei Wang, Josh Jarrell, Sha Xue, et al., Fast neutron detection at near-core location of a research reactor with a SiC detector, Detect. Assoc. Equip. 888 (2018) 126-131, https://doi.org/10.1016/j.nima.2018.01.070.
  2. G. Tosi, A. Torresin, S. Agosteo, et al., Neutron measurements around medical electron accelerators by active and passive detection techniques, Med. Phys. 18 (1) (1991) 54, https://doi.org/10.1118/1.596751.
  3. A. El-Taher, Rare earth elements content in geological samples from eastern desert, Egypt, determined by instrumental neutron activation analysis, Appl. Radiat. Isot. 68 (9) (2010) 1859-1863, https://doi.org/10.1016/j.apradiso.2010.02.012.
  4. L.R. Greenwood, R.R. Heinrich, R.J. Kennerley, et al., Development and testing of neutron dosimetry techniques for accelerator-based irradiation facilities, Nucl. Technol. 41 (1) (1978) 109-128, https://doi.org/10.13182/NT78-A32137.
  5. M.L. Litvak, I.G. Mitrofanov, A.B. Sanin, et al., LEND neutron data processing for the mapping of the Moon, J. Geophys. Res. 117 (2012) E00H32, https://doi.org/10.1029/2011JE004035.
  6. F.D. Brooks, Development of organic scintillators, Nucl. Instrum. Methods 162 (1-3) (1979) 477-505, https://doi.org/10.1016/0029-554X(79)90729-8.
  7. D. Cester, M. Lunardon, G. Nebbia, et al., Pulse shape discrimination with fast digitizers, Nucl. Instrum. Meth. Phys. A 748 (2014) 33-38, https://doi.org/10.1016/j.nima.2014.02.032.
  8. M.L. Roush, M.A. Wilson, W.F. Hornyak, Pulse shape discrimination, Nucl. Instrum. Methods 31 (1) (1964) 112-124, https://doi.org/10.1016/0029-554X(64)90333-7.
  9. C. Frangville, A. Grabowski, J. Dumazert, et al., Nanoparticles-loaded plastic scintillators for fast/thermal neutrons/gamma discrimination: simulation and results, Nucl. Instrum. Meth. Phys. A942 (2019), 162370, https://doi.org/10.1016/j.nima.2019.162370.
  10. R. Coulon, V. Kondrasovs, Q. Lecomte, et al., Multilayer phoswich scintillators for neutron/gamma discrimination, Radiat. Meas. 117 (2018) 57-62, https://doi.org/10.1016/j.radmeas.2018.07.011.
  11. D. Wolski, M. Moszynski, T. Ludziejewski, et al., Comparison of n-c discrimination by zero-crossing and digital charge comparison methods, Nucl. Instrum. Methds Phys. Res. Sect. A Accel. Spectrom. Detect Assoc. Equip. 360 (3) (1995) 584-592, https://doi.org/10.1016/0168-9002(95)00037-2.
  12. Z. Zuo, H.R. Liu, Y.C. Yan, et al., Adaptability of nec discrimination and filtering methods based on plastic scintillation, Nucl. Sci. Tech. 32 (2021) 28, https://doi.org/10.1007/s41365-021-00865-3.
  13. Zhuo Zuo, YuLong Xiao, ZhenFeng Liu, et al., Discrimination of neutrons and gamma-rays in plastic scintillator based on falling-edge percentage slope method, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1010 (2021), 165483, https://doi.org/10.1016/j.nima.2021.165483.
  14. H.R. Liu, Y.X. Cheng, Z. Zuo, et al., Discrimination of neutrons and gamma rays in plastic scintillator based on pulse-coupled neural network, Nucl. Sci. Tech. 32 (2021) 82, https://doi.org/10.1007/s41365-021-00915-w.
  15. J. Iwanowska-Hanke, M. Moszynski, L. Swiderski, et al., Comparative study of large samples (2"x2'') plastic scintillators and EJ309 liquid with pulse shape discrimination (PSD) capabilities, J. Instrum. 9 (6) (2014), P06014, https://doi.org/10.1088/1748-0221/9/06/P06014.
  16. R. Eckhorn, H.J. Reitboeck, M. Arndt, et al., Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex, Neural Comput. 2 (3) (1990) 293-307, https://doi.org/10.1162/neco.1990.2.3.293.
  17. J. Johnson, Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images, Appl. Opt. 33 (1994) 6239-6253, https://doi.org/10.1364/AO.33.006239.
  18. H.S. Ranganath, G. Kuntimad, J.L. Johnson, Pulse Coupled Neural Networks for Image Processing, Proc. IEEE Southeastcon, Raleigh, NC, 1995, pp. 37-43, https://doi.org/10.1109/SECON.1995.513053.
  19. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117 (4) (1952) 500-544, https://doi.org/10.1113/jphysiol.1952.sp004764.
  20. K. Waldemark, T. Lindblad, V. Becanovic, et al., Patterns from the sky: satellite image analysis using pulse coupled neural networks for pre-processing, segmentation and edge detection, Pattern Recogn. Lett. 21 (3) (2000) 227-237, https://doi.org/10.1016/S0167-8655(99)00152-X.
  21. H.S. Ranganath, G. Kuntimad, Object detection using pulse coupled neural networks, IEEE Trans. Neural Network. 10 (3) (1999) 615-620, https://doi.org/10.1109/72.761720. May 1999.
  22. B. Yu, L. Zhang, Pulse-coupled neural networks for contour and motion matchings, IEEE Trans. Neural Network. 15 (5) (2004) 1186-1201, https://doi.org/10.1109/tnn.2004.832830.
  23. X. Gu, D. Yu, L. Zhang, Image shadow removal using pulse coupled neural network, IEEE Trans. Neural Network. 16 (3) (2005) 692-698, https://doi.org/10.1109/TNN.2005.844902.
  24. J.L. Johnson, M.L. Padgett, PCNN models and applications, IEEE Trans. Neural Network. 10 (3) (1999) 480-498, https://doi.org/10.1109/72.761706.
  25. D. Wolski, M. Moszynski, T. Ludziejewski, et al., Comparison of n-discrimination by zero-crossing and digital charge comparison methods, Nucl. Instrum. Methds Phys. Res. Sect. A Accel. Spectrom. Detect Assoc. Equip. 360 (3) (1995) 584-592, https://doi.org/10.1016/0168-9002(95)00037-2.
  26. N.P. Hawkes, K.A.A. Gamage, G.C. Taylor, Digital approaches to field neutron spectrometry, Radiat. Meas. 45 (10) (2010) 1305-1308, https://doi.org/10.1016/j.radmeas.2010.06.043.
  27. P. Sperr, H. Spieler, M.R. Maier, et al., A simple pulse-shape discrimination circuit, Nucl. Instrum. Methods 116 (1974) 55, https://doi.org/10.1016/0029-554X(74)90578-3.
  28. S. Pai, W.F. Piel, D.B. Fossan, et al., A versatile electronic pulse-shape discriminator, Nucl. Instrum. Methods A278 (1989) 749, https://doi.org/10.1016/0168-9002(89)91199-6.
  29. M. Nakhostin, Recursive algorithms for real-time digital CR(RC)n pulse shaping, IEEE Trans. Nucl. Sci. 58 (5) (2011) 2378-2381, https://doi.org/10.1109/TNS.2011.2164556.
  30. K. Zhan, H. Zhang, Y. Ma, New spiking cortical model for invariant texture retrieval and image processing. Neural Networks, IEEE Transactions on 12 (2009) 1980-1986, https://doi.org/10.1109/TNN.2009.2030585.
  31. K. Zhan, Jinhui Shi, Q. Li, J. Teng, M. Wang, Image Segmentation Using Fast Linking SCM, 2015 International Joint Conference on Neural Networks (IJCNN), 2015, https://doi.org/10.1109/ijcnn.2015.7280579.
  32. B.S. Manjunath, W.Y. Ma, Texture features for browsing and retrieval of image data, IEEE Trans. Pattern Anal. Mach. Intell. 18 (8) (1996) 837-842, https://doi.org/10.1109/34.531803.
  33. R.A. Winyard, J.E. Lutkin, G.W. McBeth, Pulse shape discrimination in inorganic and organic scintillators, I. Nucl. Instrum. Meth. 95 (1) (1971) 141-153, https://doi.org/10.1016/0029-554X(71)90054-1.
  34. B. D'Mellow, M.D. Aspinall, R.O. Mackin, et al., Digital discrimination of neutrons and c-rays in liquid scintillators using pulse gradient analysis, Nucl. Instrum. Meth. Phys. A 578 (1) (2007) 191-197, https://doi.org/10.1016/j.nima.2007.04.174.
  35. J. Allem, Short term spectral analysis, synthesis, and modification by discrete Fourier transform, IEEE Trans. Acoust. 25 (3) (1997) 235-238, https://doi.org/10.1109/TASSP.1977.1162950.
  36. S. Yousefi, L. Lucchese, M.D. Aspinall, Digital discrimination of neutrons and gamma-rays in liquid scintillators using wavelets, Nucl. Instrum. Methods A 598 (2009) 551-555, https://doi.org/10.1016/j.nima.2008.09.028.
  37. S. Hosur, A.H. Tewfik, Wavelet transform domain adaptive FIR filtering, IEEE Trans. Signal Process. 45 (1997) 617-630, https://doi.org/10.1109/78.558477.
  38. Y. Zheng, S. Chen, W. Tan, et al., Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and a Kalman filter, IEEE Trans. Ultrason. Ferroelectrics Freq. Control 54 (2007) 290-300, https://doi.org/10.1109/TUFFC.2007.243.
  39. J.A. Burns, E.M. Cliff, C. Rautenberg, A distributed parameter control approach to optimal filtering and smoothing with mobile sensor networks, in: 2009 17th Mediterranean Conference on Control and Automation, 2009, pp. 181-186, https://doi.org/10.1109/MED.2009.5164536.
  40. H. Liu, Z. Zuo, P. Li, B. Liu, L. Chang, Y. Yan, Anti-noise performance of the pulse coupled neural network applied in discrimination of neutron and gamma-ray, Nucl. Sci. Tech. 33 (2022) 75, 2022, https://doi:10.1007/s41365-022-01054-6.